BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19175083)

  • 1. Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach.
    Hu YH; Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5242-52. PubMed ID: 19175083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer simulation platform for the optimization of a breast tomosynthesis system.
    Zhou J; Zhao B; Zhao W
    Med Phys; 2007 Mar; 34(3):1098-109. PubMed ID: 17441255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis.
    Hu YH; Zhao W
    Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital breast tomosynthesis: Image acquisition principles and artifacts.
    Sujlana PS; Mahesh M; Vedantham S; Harvey SC; Mullen LA; Woods RW
    Clin Imaging; 2019; 55():188-195. PubMed ID: 30236642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the sensitivity of the optimization of acquisition geometry to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study.
    Zeng R; Park S; Bakic P; Myers KJ
    Phys Med Biol; 2015 Feb; 60(3):1259-88. PubMed ID: 25591807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.
    Garrett JW; Li Y; Li K; Chen GH
    Med Phys; 2018 May; 45(5):2009-2022. PubMed ID: 29542821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of system sharpness for two digital breast tomosynthesis systems.
    Marshall NW; Bosmans H
    Phys Med Biol; 2012 Nov; 57(22):7629-50. PubMed ID: 23123601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.