These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 19175097)
1. Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values. Noble JH; Warren FM; Labadie RF; Dawant BM Med Phys; 2008 Dec; 35(12):5375-84. PubMed ID: 19175097 [TBL] [Abstract][Full Text] [Related]
2. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. Reda FA; Noble JH; Rivas A; McRackan TR; Labadie RF; Dawant BM Med Phys; 2011 Oct; 38(10):5590-600. PubMed ID: 21992377 [TBL] [Abstract][Full Text] [Related]
3. Automatic determination of optimal linear drilling trajectories for cochlear access accounting for drill-positioning error. Noble JH; Majdani O; Labadie RF; Dawant B; Fitzpatrick JM Int J Med Robot; 2010 Sep; 6(3):281-90. PubMed ID: 20812268 [TBL] [Abstract][Full Text] [Related]
4. Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients. Reda FA; McRackan TR; Labadie RF; Dawant BM; Noble JH Med Image Anal; 2014 Apr; 18(3):605-15. PubMed ID: 24650801 [TBL] [Abstract][Full Text] [Related]
5. A new approach for tubular structure modeling and segmentation using graph-based techniques. Noble JH; Dawant BM Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):305-12. PubMed ID: 22003713 [TBL] [Abstract][Full Text] [Related]
6. Surgical planning and evaluation of implanting a penetrating cochlear nerve implant in human temporal bones using microcomputed tomography. Theunisse HJ; Gotthardt M; Mylanus EA Otol Neurotol; 2012 Aug; 33(6):1027-33. PubMed ID: 22805103 [TBL] [Abstract][Full Text] [Related]
7. Cochlear implantation surgery in patients with narrow facial recess. Wang L; Yang J; Jiang C; Zhang D Acta Otolaryngol; 2013 Sep; 133(9):935-8. PubMed ID: 23768015 [TBL] [Abstract][Full Text] [Related]
8. An observational, prospective study to evaluate the preoperative planning tool "CI-Wizard" for cochlear implant surgery. Pirlich M; Tittmann M; Franz D; Dietz A; Hofer M Eur Arch Otorhinolaryngol; 2017 Feb; 274(2):685-694. PubMed ID: 27589966 [TBL] [Abstract][Full Text] [Related]
11. Cochlear orientation and dimensions of the facial recess in cochlear implantation. Bettman RH; Appelman AM; van Olphen AF; Zonneveld FW; Huizing EH ORL J Otorhinolaryngol Relat Spec; 2003; 65(6):353-8. PubMed ID: 14981329 [TBL] [Abstract][Full Text] [Related]
12. Possibility of differentiation of cochlear electrodes in radiological measurements of the intracochlear and chorda-facial angle position. Diogo I; Walliczeck U; Taube J; Franke N; Teymoortash A; Werner J; Güldner C Acta Otorhinolaryngol Ital; 2016 Aug; 36(4):310-316. PubMed ID: 27734984 [TBL] [Abstract][Full Text] [Related]
13. Active and Adequate Exposure of the Facial Nerve and Chorda Tympani Nerve to Improve the Safety of Cochlear Implantation. Lu L; Wang M; Dong J; Lin C; Yu C; Qian X; Gao X Ear Nose Throat J; 2021 Mar; 100(3):196-200. PubMed ID: 31547697 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the size of the target region for atraumatic opening of the cochlea through the facial recess. Rau TS; Kreul D; Lexow J; Hügl S; Zuniga MG; Lenarz T; Majdani O Comput Med Imaging Graph; 2019 Oct; 77():101655. PubMed ID: 31539862 [TBL] [Abstract][Full Text] [Related]
16. Percutaneous cochlear implant drilling via customized frames: an in vitro study. Balachandran R; Mitchell JE; Blachon G; Noble JH; Dawant BM; Fitzpatrick JM; Labadie RF Otolaryngol Head Neck Surg; 2010 Mar; 142(3):421-6. PubMed ID: 20172392 [TBL] [Abstract][Full Text] [Related]
17. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Bell B; Gerber N; Williamson T; Gavaghan K; Wimmer W; Caversaccio M; Weber S Otol Neurotol; 2013 Sep; 34(7):1284-90. PubMed ID: 23921934 [TBL] [Abstract][Full Text] [Related]
18. Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Heutink F; Koch V; Verbist B; van der Woude WJ; Mylanus E; Huinck W; Sechopoulos I; Caballo M Comput Methods Programs Biomed; 2020 Jul; 191():105387. PubMed ID: 32109685 [TBL] [Abstract][Full Text] [Related]
19. Variability in Manual Segmentation of Temporal Bone Structures in Cone Beam CT Images. Lee JW; Andersen SAW; Hittle B; Powell KA; Al-Fartoussi H; Banks L; Brannen Z; Lahchich M; Wiet GJ Otol Neurotol; 2024 Mar; 45(3):e137-e141. PubMed ID: 38361290 [TBL] [Abstract][Full Text] [Related]
20. The posterior ligament of the incus ("white dot"): A reliable surgical landmark for the facial recess. McMillan RA; Nassiri AM; Leonel LC; Rezende NC; Peris Celda M; Sweeney AD; Carlson ML Am J Otolaryngol; 2022; 43(2):103304. PubMed ID: 34896938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]