These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19175307)

  • 21. Absorption Spectroscopy of an Individual Fano Cluster.
    Yorulmaz M; Hoggard A; Zhao H; Wen F; Chang WS; Halas NJ; Nordlander P; Link S
    Nano Lett; 2016 Oct; 16(10):6497-6503. PubMed ID: 27669356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simplified numerical modeling for Fano interference-induced asymmetric light reflectance effect using equivalent medium theory.
    Chen B; Lu W; Li P; Yang X; Li J; Huang K; Kang J; Zhang R
    Opt Express; 2022 Jun; 30(13):22700-22711. PubMed ID: 36224962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.
    Lin L; Roberts A
    Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures.
    Qin FF; Xiao JJ; Zhang Q; Liang WG
    Opt Lett; 2016 Jan; 41(1):60-3. PubMed ID: 26696158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.
    Bakhti S; Tishchenko AV; Zambrana-Puyalto X; Bonod N; Dhuey SD; Schuck PJ; Cabrini S; Alayoglu S; Destouches N
    Sci Rep; 2016 Sep; 6():32061. PubMed ID: 27580515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon resonances tailored by Fano profiles in silver-based core-shell nanoparticles.
    Pellarin M; Broyer M; Lermé J; Lebeault MA; Ramade J; Cottancin E
    Phys Chem Chem Phys; 2016 Feb; 18(5):4121-33. PubMed ID: 26780585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites.
    DeLacy BG; Miller OD; Hsu CW; Zander Z; Lacey S; Yagloski R; Fountain AW; Valdes E; Anquillare E; Soljačić M; Johnson SG; Joannopoulos JD
    Nano Lett; 2015 Apr; 15(4):2588-93. PubMed ID: 25723653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical Hybridization in Plasmonic Honeycomb Lattices.
    Li R; Bourgeois MR; Cherqui C; Guan J; Wang D; Hu J; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2019 Sep; 19(9):6435-6441. PubMed ID: 31390214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber.
    Sciacca B; Monro TM
    Langmuir; 2014 Jan; 30(3):946-54. PubMed ID: 24397817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon Resonance Hybridization of Gold Nanospheres and Palladium Nanoshells Combined in a Rattle Structure.
    Mahmoud MA
    J Phys Chem Lett; 2014 Aug; 5(15):2594-600. PubMed ID: 26277949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.