These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19175307)

  • 61. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures.
    Fu YH; Zhang JB; Yu YF; Luk'yanchuk B
    ACS Nano; 2012 Jun; 6(6):5130-7. PubMed ID: 22577794
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays.
    Li J; Gu Y; Gong Q
    Opt Express; 2010 Aug; 18(17):17684-98. PubMed ID: 20721155
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.
    Walsh GF; Dal Negro L
    Nano Lett; 2013 Feb; 13(2):786-92. PubMed ID: 23339774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface.
    Nicolas R; Lévêque G; Marae-Djouda J; Montay G; Madi Y; Plain J; Herro Z; Kazan M; Adam PM; Maurer T
    Sci Rep; 2015 Sep; 5():14419. PubMed ID: 26399425
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations.
    Chuang WH; Wang JY; Yang CC; Kiang YW
    Opt Express; 2009 Jan; 17(1):104-16. PubMed ID: 19129878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fano Interference in the Optical Absorption of an Individual Gold-Silver Nanodimer.
    Lombardi A; Grzelczak MP; Pertreux E; Crut A; Maioli P; Pastoriza-Santos I; Liz-Marzán LM; Vallée F; Del Fatti N
    Nano Lett; 2016 Oct; 16(10):6311-6316. PubMed ID: 27648834
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation.
    Li GZ; Li Q; Wu LJ
    Nanoscale; 2015 Dec; 7(47):19914-20. PubMed ID: 26580687
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas.
    Wadell C; Antosiewicz TJ; Langhammer C
    Nano Lett; 2012 Sep; 12(9):4784-90. PubMed ID: 22916998
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS.
    Du L; Zhang X; Mei T; Yuan X
    Opt Express; 2010 Feb; 18(3):1959-65. PubMed ID: 20174025
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications.
    Liu F; Zhang X
    Biosens Bioelectron; 2015 Jun; 68():719-725. PubMed ID: 25679119
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fanoshells: nanoparticles with built-in Fano resonances.
    Mukherjee S; Sobhani H; Lassiter JB; Bardhan R; Nordlander P; Halas NJ
    Nano Lett; 2010 Jul; 10(7):2694-701. PubMed ID: 20509616
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Theta-shaped plasmonic nanostructures: bringing "dark" multipole plasmon resonances into action via conductive coupling.
    Habteyes TG; Dhuey S; Cabrini S; Schuck PJ; Leone SR
    Nano Lett; 2011 Apr; 11(4):1819-25. PubMed ID: 21425843
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V; Benabbas A; Bigot JY
    Opt Express; 2008 Jul; 16(15):11611-7. PubMed ID: 18648482
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles.
    Sönnichsen C; Reinhard BM; Liphardt J; Alivisatos AP
    Nat Biotechnol; 2005 Jun; 23(6):741-5. PubMed ID: 15908940
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excitation of direction-tunable surface plasmon polaritons by using a rectangular array of silver nanodisks.
    Yao S; Guo Z; Sun H; Huang H
    Opt Express; 2018 Aug; 26(16):20102-20110. PubMed ID: 30119325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.