BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19175378)

  • 21. Regulation of reverse cholesterol transport and clinical implications.
    Rader DJ
    Am J Cardiol; 2003 Aug; 92(4A):42J-49J. PubMed ID: 12957326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages.
    Tsubakio-Yamamoto K; Matsuura F; Koseki M; Oku H; Sandoval JC; Inagaki M; Nakatani K; Nakaoka H; Kawase R; Yuasa-Kawase M; Masuda D; Ohama T; Maeda N; Nakagawa-Toyama Y; Ishigami M; Nishida M; Kihara S; Shimomura I; Yamashita S
    Biochem Biophys Res Commun; 2008 Oct; 375(3):390-4. PubMed ID: 18703020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scavenger receptor type BI potentiates reverse cholesterol transport system by removing cholesterol ester from HDL.
    Kinoshita M; Fujita M; Usui S; Maeda Y; Kudo M; Hirota D; Suda T; Taki M; Okazaki M; Teramoto T
    Atherosclerosis; 2004 Apr; 173(2):197-202. PubMed ID: 15064092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages.
    Uto-Kondo H; Ayaori M; Ogura M; Nakaya K; Ito M; Suzuki A; Takiguchi S; Yakushiji E; Terao Y; Ozasa H; Hisada T; Sasaki M; Ohsuzu F; Ikewaki K
    Circ Res; 2010 Mar; 106(4):779-87. PubMed ID: 20075335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High density lipoprotein turnover is dependent on peroxisome proliferator-activated receptor α in mice.
    Akita N; Tsujita M; Yokota T; Gonzalez FJ; Ohte N; Kimura G; Yokoyama S
    J Atheroscler Thromb; 2010 Nov; 17(11):1149-59. PubMed ID: 20668363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hepatic ATP-binding cassette transporter A1 is a key molecule in high-density lipoprotein cholesteryl ester metabolism in mice.
    Singaraja RR; Stahmer B; Brundert M; Merkel M; Heeren J; Bissada N; Kang M; Timmins JM; Ramakrishnan R; Parks JS; Hayden MR; Rinninger F
    Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1821-7. PubMed ID: 16728652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits.
    Zhao SP; Yang J; Li J; Dong SZ; Wu ZH
    Int J Cardiol; 2008 Feb; 124(2):172-8. PubMed ID: 17395297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection.
    Escolà-Gil JC; Rotllan N; Julve J; Blanco-Vaca F
    Atherosclerosis; 2009 Oct; 206(2):321-7. PubMed ID: 19362310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins.
    Wang N; Lan D; Chen W; Matsuura F; Tall AR
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9774-9. PubMed ID: 15210959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-associated decrease of high-density lipoprotein-mediated reverse cholesterol transport activity.
    Berrougui H; Khalil A
    Rejuvenation Res; 2009 Apr; 12(2):117-26. PubMed ID: 19405812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].
    Ayaori M
    Rinsho Byori; 2016 Jan; 64(1):57-65. PubMed ID: 27192798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport.
    Lichtenstein L; Serhan N; Espinosa-Delgado S; Fabre A; Annema W; Tietge UJ; Robaye B; Boeynaems JM; Laffargue M; Perret B; Martinez LO
    Cardiovasc Res; 2015 May; 106(2):314-23. PubMed ID: 25770145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL.
    Wang N; Ranalletta M; Matsuura F; Peng F; Tall AR
    Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1310-6. PubMed ID: 16556852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic interventions targeted at the augmentation of reverse cholesterol transport.
    Toth PP; Davidson MH
    Curr Opin Cardiol; 2004 Jul; 19(4):374-9. PubMed ID: 15218399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting high-density lipoproteins: update on a promising therapy.
    Verdier C; Martinez LO; Ferrières J; Elbaz M; Genoux A; Perret B
    Arch Cardiovasc Dis; 2013 Nov; 106(11):601-11. PubMed ID: 24074699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel lipid-regulating drugs.
    Thompson GR; Naoumova RP
    Expert Opin Investig Drugs; 2000 Nov; 9(11):2619-28. PubMed ID: 11060824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rate-limiting factors of cholesterol efflux in reverse cholesterol transport: acceptors and donors.
    Fu Y
    Clin Exp Pharmacol Physiol; 2010 Jul; 37(7):703-9. PubMed ID: 20374257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of inhibiting cholesteryl ester transfer protein on the kinetics of high-density lipoprotein cholesteryl ester transport in plasma: in vivo studies in rabbits.
    Kee P; Caiazza D; Rye KA; Barrett PH; Morehouse LA; Barter PJ
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):884-90. PubMed ID: 16373610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The high-fat high-fructose hamster as an animal model for niacin's biological activities in humans.
    Connolly BA; O'Connell DP; Lamon-Fava S; LeBlanc DF; Kuang YL; Schaefer EJ; Coppage AL; Benedict CR; Kiritsy CP; Bachovchin WW
    Metabolism; 2013 Dec; 62(12):1840-9. PubMed ID: 24035454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment options for low high-density lipoproteins.
    Hafiane A; Kellett S; Genest J
    Curr Opin Endocrinol Diabetes Obes; 2014 Apr; 21(2):134-9. PubMed ID: 24535232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.