BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19175518)

  • 1. Ethylene reduces gas exchange and growth of lettuce plants under hypobaric and normal atmospheric conditions.
    He C; Davies FT; Lacey RE
    Physiol Plant; 2009 Mar; 135(3):258-71. PubMed ID: 19175518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separating the effects of hypobaria and hypoxia on lettuce: growth and gas exchange.
    He C; Davies FT; Lacey RE
    Physiol Plant; 2007 Oct; 131(2):226-40. PubMed ID: 18251894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.
    He C; Davies FT
    J Plant Physiol; 2012 Mar; 169(4):369-78. PubMed ID: 22118875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat.
    He C; Davies FT; Lacey RE; Drew MC; Brown DL
    J Plant Physiol; 2003 Nov; 160(11):1341-50. PubMed ID: 14658387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace gases generated in closed plant cultivation systems and their effects on plant growth.
    Tani A; Kiyota M; Aiga I
    Biol Sci Space; 1995 Dec; 9(4):314-26. PubMed ID: 11541892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide exchange of lettuce plants under hypobaric conditions.
    Corey KA; Bates ME; Adams SL
    Adv Space Res; 1996; 18(1-2):301-8. PubMed ID: 11538976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure.
    Spanarkel R; Drew MC
    Physiol Plant; 2002 Dec; 116(4):468-77. PubMed ID: 12583399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of reduced atmospheric pressure on growth and quality of two lettuce cultivars.
    Stutte GW; Yorio NC; Edney SL; Richards JT; Hummerick MP; Stasiak M; Dixon M; Wheeler RM
    Life Sci Space Res (Amst); 2022 Aug; 34():37-44. PubMed ID: 35940688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide exchange of lettuce plants under hypobaric conditions.
    Corey KA; Bates ME; Adams SL
    Adv Space Res; 1996; 18(4-5):265-72. PubMed ID: 11538809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures.
    Qin L; He J; Lee SK; Dodd IC
    J Exp Bot; 2007; 58(11):3017-24. PubMed ID: 17728295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants.
    He J; Austin PT; Lee SK
    J Exp Bot; 2010 Sep; 61(14):3959-69. PubMed ID: 20627898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.
    Richards JT; Corey KA; Paul AL; Ferl RJ; Wheeler RM; Schuerger AC
    Astrobiology; 2006 Dec; 6(6):851-66. PubMed ID: 17155885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hypobaria, hyperoxia, and nitrogen form on the growth and nutritional quality of lettuce.
    Jia L; Tang Y; Tian K; Ai W; Shang W; Wu H
    Life Sci Space Res (Amst); 2024 Feb; 40():44-50. PubMed ID: 38245347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of wind velocity on ethylene release from lettuce plants.
    Tani A; Kiyota M
    Adv Space Res; 1997; 20(10):1923-6. PubMed ID: 11542570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene production by plants in a closed environment.
    Wheeler RM; Peterson BV; Sager JC; Knott WM
    Adv Space Res; 1996; 18(4-5):193-6. PubMed ID: 11538797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2.
    Pérez-López U; Miranda-Apodaca J; Muñoz-Rueda A; Mena-Petite A
    J Plant Physiol; 2013 Nov; 170(17):1517-25. PubMed ID: 23838124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant responses to short- and long-term exposures to high carbon dioxide levels in closed environments.
    Grodzinski B; Woodrow L; Leonardos ED; Dixon M; Tsujita MJ
    Adv Space Res; 1996; 18(4-5):203-11. PubMed ID: 11538799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene production throughout growth and development of plants.
    Wheeler RM; Peterson BV; Stutte GW
    HortScience; 2004 Dec; 39(7):1541-5. PubMed ID: 15765576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and gas exchange by lettuce stands in a closed, controlled environment.
    Wheeler RM; Mackowiak CL; Sager JC; Yorio NC; Knott WM; Berry WL
    J Am Soc Hortic Sci; 1994 May; 119(3):610-5. PubMed ID: 11538197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of LED spectra on growth, gas exchange, antioxidant activity and nutritional quality of vegetable species.
    Tang Y; Mao R; Guo S
    Life Sci Space Res (Amst); 2020 Aug; 26():77-84. PubMed ID: 32718690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.