These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19175916)

  • 41. RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins.
    Wu Y; Messing J
    Plant Physiol; 2010 May; 153(1):337-47. PubMed ID: 20237020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of structural domains for maize gamma-zein retention in Xenopus oocytes.
    Torrent M; Geli MI; Ruiz-Avila L; Canals JM; Puigdomènech P; Ludevid D
    Planta; 1994; 192(4):512-8. PubMed ID: 7764619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lysine-rich gamma-zeins are secreted in transgenic Arabidopsis plants.
    Alvarez I; Geli MI; Pimentel E; Ludevid D; Torrent M
    Planta; 1998 Jul; 205(3):420-7. PubMed ID: 9640667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of an unusual alpha-zein protein is correlated with the phenotypic effects of the floury2 mutation in maize.
    Lopes MA; Coleman CE; Kodrzycki R; Lending CR; Larkins BA
    Mol Gen Genet; 1994 Dec; 245(5):537-47. PubMed ID: 7808405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression.
    Woo YM; Hu DW; Larkins BA; Jung R
    Plant Cell; 2001 Oct; 13(10):2297-317. PubMed ID: 11595803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generation of multi-layered protein bodies in
    Schwestka J; Zeh L; Tschofen M; Schubert F; Arcalis E; Esteve-Gasent M; Pedrazzini E; Vitale A; Stoger E
    Front Plant Sci; 2023; 14():1109270. PubMed ID: 36733717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Artificial ER-Derived Vesicles as Synthetic Organelles for
    Reifenrath M; Oreb M; Boles E; Tripp J
    ACS Synth Biol; 2020 Nov; 9(11):2909-2916. PubMed ID: 33074655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BiP and zein binding domains within the delta zein protein.
    Randall JJ; Sutton DW; Hanson SF; Kemp JD
    Planta; 2005 Jul; 221(5):656-66. PubMed ID: 15726401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cys155 of 27 kDa maize gamma-zein is a key amino acid to improve its in vitro digestibility.
    Lee SH; Hamaker BR
    FEBS Lett; 2006 Oct; 580(25):5803-6. PubMed ID: 17045266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of membrane targeting strategies for the accumulation of the human immunodeficiency virus p24 protein in transgenic tobacco.
    Virgili-López G; Langhans M; Bubeck J; Pedrazzini E; Gouzerh G; Neuhaus JM; Robinson DG; Vitale A
    Int J Mol Sci; 2013 Jun; 14(7):13241-65. PubMed ID: 23803657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology.
    Mustalahti E; Saloheimo M; Joensuu JJ
    N Biotechnol; 2013 Jan; 30(2):262-8. PubMed ID: 21971507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues.
    Hofbauer A; Stoger E
    Curr Pharm Des; 2013; 19(31):5495-502. PubMed ID: 23394560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Electron Microscopy Gives a Clue: Maize Zein Bodies Bud From Central Areas of ER Sheets.
    Arcalís E; Hörmann-Dietrich U; Zeh L; Stoger E
    Front Plant Sci; 2020; 11():809. PubMed ID: 32595683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody.
    Floss DM; Sack M; Arcalis E; Stadlmann J; Quendler H; Rademacher T; Stoger E; Scheller J; Fischer R; Conrad U
    Plant Biotechnol J; 2009 Dec; 7(9):899-913. PubMed ID: 19843249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into Maize LEA proteins: from proteomics to functional approaches.
    Amara I; Odena A; Oliveira E; Moreno A; Masmoudi K; Pagès M; Goday A
    Plant Cell Physiol; 2012 Feb; 53(2):312-29. PubMed ID: 22199372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wild-type opaque2 and defective opaque2 polypeptides form complexes in maize endosperm cells and bind the opaque2-zein target site.
    Gavazzi F; Lazzari B; Ciceri P; Gianazza E; Viotti A
    Plant Physiol; 2007 Nov; 145(3):933-45. PubMed ID: 17827273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals.
    Takaiwa F; Wakasa Y; Hayashi S; Kawakatsu T
    Plant Sci; 2017 Oct; 263():201-209. PubMed ID: 28818376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants.
    Boston RS; Fontes EB; Shank BB; Wrobel RL
    Plant Cell; 1991 May; 3(5):497-505. PubMed ID: 1840924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species.
    Park M; Kim SJ; Vitale A; Hwang I
    Plant Physiol; 2004 Feb; 134(2):625-39. PubMed ID: 14730078
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cereal seed storage proteins: structures, properties and role in grain utilization.
    Shewry PR; Halford NG
    J Exp Bot; 2002 Apr; 53(370):947-58. PubMed ID: 11912237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.