BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19176360)

  • 1. JAK1 mutation analysis in T-cell acute lymphoblastic leukemia cell lines.
    Porcu M; Gielen O; Cools J; De Keersmaecker K
    Haematologica; 2009 Mar; 94(3):435-7. PubMed ID: 19176360
    [No Abstract]   [Full Text] [Related]  

  • 2. MOHITO, a novel mouse cytokine-dependent T-cell line, enables studies of oncogenic signaling in the T-cell context.
    Kleppe M; Mentens N; Tousseyn T; Wlodarska I; Cools J
    Haematologica; 2011 May; 96(5):779-83. PubMed ID: 21193420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
    Hornakova T; Chiaretti S; Lemaire MM; Foà R; Ben Abdelali R; Asnafi V; Tartaglia M; Renauld JC; Knoops L
    Blood; 2010 Apr; 115(16):3287-95. PubMed ID: 20167706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.
    Zenatti PP; Ribeiro D; Li W; Zuurbier L; Silva MC; Paganin M; Tritapoe J; Hixon JA; Silveira AB; Cardoso BA; Sarmento LM; Correia N; Toribio ML; Kobarg J; Horstmann M; Pieters R; Brandalise SR; Ferrando AA; Meijerink JP; Durum SK; Yunes JA; Barata JT
    Nat Genet; 2011 Sep; 43(10):932-9. PubMed ID: 21892159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.
    Kleppe M; Soulier J; Asnafi V; Mentens N; Hornakova T; Knoops L; Constantinescu S; Sigaux F; Meijerink JP; Vandenberghe P; Tartaglia M; Foa R; Macintyre E; Haferlach T; Cools J
    Blood; 2011 Jun; 117(26):7090-8. PubMed ID: 21551237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations.
    Spinella JF; Cassart P; Richer C; Saillour V; Ouimet M; Langlois S; St-Onge P; Sontag T; Healy J; Minden MD; Sinnett D
    Oncotarget; 2016 Oct; 7(40):65485-65503. PubMed ID: 27602765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.
    Flex E; Petrangeli V; Stella L; Chiaretti S; Hornakova T; Knoops L; Ariola C; Fodale V; Clappier E; Paoloni F; Martinelli S; Fragale A; Sanchez M; Tavolaro S; Messina M; Cazzaniga G; Camera A; Pizzolo G; Tornesello A; Vignetti M; Battistini A; Cavé H; Gelb BD; Renauld JC; Biondi A; Constantinescu SN; Foà R; Tartaglia M
    J Exp Med; 2008 Apr; 205(4):751-8. PubMed ID: 18362173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural modeling of JAK1 mutations in T-cell acute lymphoblastic leukemia reveals a second contact site between pseudokinase and kinase domains.
    Canté-Barrett K; Uitdehaag JC; Meijerink JP
    Haematologica; 2016 May; 101(5):e189-91. PubMed ID: 26819051
    [No Abstract]   [Full Text] [Related]  

  • 9. JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study.
    Asnafi V; Le Noir S; Lhermitte L; Gardin C; Legrand F; Vallantin X; Malfuson JV; Ifrah N; Dombret H; Macintyre E
    Br J Haematol; 2010 Jan; 148(1):178-9. PubMed ID: 19764985
    [No Abstract]   [Full Text] [Related]  

  • 10. High PIM1 expression is a biomarker of T-cell acute lymphoblastic leukemia with JAK/STAT activation or t(6;7)(p21;q34)/TRB@-PIM1 rearrangement.
    La Starza R; Messina M; Gianfelici V; Pierini V; Matteucci C; Pierini T; Limongi MZ; Vitale A; Roti G; Chiaretti S; Foà R; Mecucci C
    Leukemia; 2018 Aug; 32(8):1807-1810. PubMed ID: 29479063
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.
    Li Q; Li B; Hu L; Ning H; Jiang M; Wang D; Liu T; Zhang B; Chen H
    Oncotarget; 2017 May; 8(21):34687-34697. PubMed ID: 28410228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
    Durinck K; Wallaert A; Van de Walle I; Van Loocke W; Volders PJ; Vanhauwaert S; Geerdens E; Benoit Y; Van Roy N; Poppe B; Soulier J; Cools J; Mestdagh P; Vandesompele J; Rondou P; Van Vlierberghe P; Taghon T; Speleman F
    Haematologica; 2014 Dec; 99(12):1808-16. PubMed ID: 25344525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting FoxM1 transcription factor in T-cell acute lymphoblastic leukemia cell line.
    Tüfekçi Ö; Yandım MK; Ören H; İrken G; Baran Y
    Leuk Res; 2015 Mar; 39(3):342-7. PubMed ID: 25557384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage.
    Lim M; Batista CR; de Oliveira BR; Creighton R; Ferguson J; Clemmer K; Knight D; Iansavitchous J; Mahmood D; Avino M; DeKoter RP
    Mol Cell Biol; 2020 Aug; 40(18):. PubMed ID: 32631903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.
    Qian L; Zhang W; Lei B; He A; Ye L; Li X; Dong X
    Oncol Rep; 2016 Nov; 36(5):2511-2516. PubMed ID: 27666896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway simulations in common oncogenic drivers of leukemic and rhabdomyosarcoma cells: a systems biology approach.
    Lambrou GI; Zaravinos A; Adamaki M; Spandidos DA; Tzortzatou-Stathopoulou F; Vlachopoulos S
    Int J Oncol; 2012 May; 40(5):1365-90. PubMed ID: 22322884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing of Notch3 Using shRNA driven by survivin promoter inhibits growth and promotes apoptosis of human T-cell acute lymphoblastic leukemia cells.
    Xiang J; Ouyang Y; Cui Y; Lin F; Ren J; Long M; Chen X; Wei J; Zhang H
    Clin Lymphoma Myeloma Leuk; 2012 Feb; 12(1):59-65. PubMed ID: 21940234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propiece IL-1α facilitates the growth of acute T-lymphocytic leukemia cells through the activation of NF-κB and SP1.
    Zhang Y; Yu X; Lin D; Lei L; Hu B; Cao F; Mei Y; Wu D; Liu H
    Oncotarget; 2017 Feb; 8(9):15677-15688. PubMed ID: 28152513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.