These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 19176554)

  • 1. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques.
    Brenke R; Kozakov D; Chuang GY; Beglov D; Hall D; Landon MR; Mattos C; Vajda S
    Bioinformatics; 2009 Mar; 25(5):621-7. PubMed ID: 19176554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTMAP: extended protein mapping with user-selected probe molecules.
    Ngan CH; Bohnuud T; Mottarella SE; Beglov D; Villar EA; Hall DR; Kozakov D; Vajda S
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W271-5. PubMed ID: 22589414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme.
    Hall DH; Grove LE; Yueh C; Ngan CH; Kozakov D; Vajda S
    J Am Chem Soc; 2011 Dec; 133(51):20668-71. PubMed ID: 22092261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein binding sites by computational solvent mapping.
    Hall DR; Kozakov D; Vajda S
    Methods Mol Biol; 2012; 819():13-27. PubMed ID: 22183527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.
    Kozakov D; Grove LE; Hall DR; Bohnuud T; Mottarella SE; Luo L; Xia B; Beglov D; Vajda S
    Nat Protoc; 2015 May; 10(5):733-55. PubMed ID: 25855957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites.
    Khan O; Jones G; Lazou M; Joseph-McCarthy D; Kozakov D; Beglov D; Vajda S
    J Chem Inf Model; 2024 Mar; 64(6):2084-2100. PubMed ID: 38456842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery.
    Hall DR; Ngan CH; Zerbe BS; Kozakov D; Vajda S
    J Chem Inf Model; 2012 Jan; 52(1):199-209. PubMed ID: 22145575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots.
    Grove LE; Hall DR; Beglov D; Vajda S; Kozakov D
    Bioinformatics; 2013 May; 29(9):1218-9. PubMed ID: 23476022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hot spots within druggable binding regions by computational solvent mapping of proteins.
    Landon MR; Lancia DR; Yu J; Thiel SC; Vajda S
    J Med Chem; 2007 Mar; 50(6):1231-40. PubMed ID: 17305325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Druggable hot spots in trypanothione reductase: novel insights and opportunities for drug discovery revealed by DRUGpy.
    Teixeira O; Lacerda P; Froes TQ; Nonato MC; Castilho MS
    J Comput Aided Mol Des; 2021 Aug; 35(8):871-882. PubMed ID: 34181199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures.
    Egbert M; Jones G; Collins MR; Kozakov D; Vajda S
    J Mol Biol; 2022 Jun; 434(11):167587. PubMed ID: 35662465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.
    Ritchie DW; Kozakov D; Vajda S
    Bioinformatics; 2008 Sep; 24(17):1865-73. PubMed ID: 18591193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural conservation of druggable hot spots in protein-protein interfaces.
    Kozakov D; Hall DR; Chuang GY; Cencic R; Brenke R; Grove LE; Beglov D; Pelletier J; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13528-33. PubMed ID: 21808046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused grid-based resampling for protein docking and mapping.
    Mamonov AB; Moghadasi M; Mirzaei H; Zarbafian S; Grove LE; Bohnuud T; Vakili P; Ch Paschalidis I; Vajda S; Kozakov D
    J Comput Chem; 2016 Apr; 37(11):961-70. PubMed ID: 26837000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase.
    Landon MR; Lieberman RL; Hoang QQ; Ju S; Caaveiro JM; Orwig SD; Kozakov D; Brenke R; Chuang GY; Beglov D; Vajda S; Petsko GA; Ringe D
    J Comput Aided Mol Des; 2009 Aug; 23(8):491-500. PubMed ID: 19521672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
    Zerbe BS; Hall DR; Vajda S; Whitty A; Kozakov D
    J Chem Inf Model; 2012 Aug; 52(8):2236-44. PubMed ID: 22770357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular dynamics ensemble-based approach for the mapping of druggable binding sites.
    Ivetac A; McCammon JA
    Methods Mol Biol; 2012; 819():3-12. PubMed ID: 22183526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach.
    Ivetac A; McCammon JA
    Chem Biol Drug Des; 2010 Sep; 76(3):201-17. PubMed ID: 20626410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors.
    Wakefield AE; Bajusz D; Kozakov D; Keserű GM; Vajda S
    J Chem Inf Model; 2022 Oct; 62(20):4937-4954. PubMed ID: 36195573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of substrate binding sites in enzymes by computational solvent mapping.
    Silberstein M; Dennis S; Brown L; Kortvelyesi T; Clodfelter K; Vajda S
    J Mol Biol; 2003 Oct; 332(5):1095-113. PubMed ID: 14499612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.