These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 19176717)
1. Molecular modeling and site-directed mutagenesis reveal essential residues for catalysis in a prokaryote-type aspartate aminotransferase. de la Torre F; Moya-García AA; Suárez MF; Rodríguez-Caso C; Cañas RA; Sánchez-Jiménez F; Cánovas FM Plant Physiol; 2009 Apr; 149(4):1648-60. PubMed ID: 19176717 [TBL] [Abstract][Full Text] [Related]
2. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. de la Torre F; De Santis L; Suárez MF; Crespillo R; Cánovas FM Plant J; 2006 May; 46(3):414-25. PubMed ID: 16623902 [TBL] [Abstract][Full Text] [Related]
3. Tyrosine metabolism: identification of a key residue in the acquisition of prephenate aminotransferase activity by 1β aspartate aminotransferase. Giustini C; Graindorge M; Cobessi D; Crouzy S; Robin A; Curien G; Matringe M FEBS J; 2019 Jun; 286(11):2118-2134. PubMed ID: 30771275 [TBL] [Abstract][Full Text] [Related]
4. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Nakai T; Okada K; Akutsu S; Miyahara I; Kawaguchi S; Kato R; Kuramitsu S; Hirotsu K Biochemistry; 1999 Feb; 38(8):2413-24. PubMed ID: 10029535 [TBL] [Abstract][Full Text] [Related]
5. The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. Nobe Y; Kawaguchi S; Ura H; Nakai T; Hirotsu K; Kato R; Kuramitsu S J Biol Chem; 1998 Nov; 273(45):29554-64. PubMed ID: 9792664 [TBL] [Abstract][Full Text] [Related]
6. The aspartate aminotransferase family in conifers: biochemical analysis of a prokaryotic-type enzyme from maritime pine. de la Torre F; Suárez MF; Santis Ld; Cánovas FM Tree Physiol; 2007 Sep; 27(9):1283-91. PubMed ID: 17545128 [TBL] [Abstract][Full Text] [Related]
7. An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8. Okamoto A; Kato R; Masui R; Yamagishi A; Oshima T; Kuramitsu S J Biochem; 1996 Jan; 119(1):135-44. PubMed ID: 8907187 [TBL] [Abstract][Full Text] [Related]
8. Homology modeling and site-directed mutagenesis reveal catalytic key amino acids of 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase from Arabidopsis. Rahier A; Bergdoll M; Génot G; Bouvier F; Camara B Plant Physiol; 2009 Apr; 149(4):1872-86. PubMed ID: 19218365 [TBL] [Abstract][Full Text] [Related]
9. Glutamine:phenylpyruvate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8. Hosono A; Mizuguchi H; Hayashi H; Goto M; Miyahara I; Hirotsu K; Kagamiyama H J Biochem; 2003 Dec; 134(6):843-51. PubMed ID: 14769873 [TBL] [Abstract][Full Text] [Related]
10. Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Mazauric MH; Keith G; Logan D; Kreutzer R; Giegé R; Kern D Eur J Biochem; 1998 Feb; 251(3):744-57. PubMed ID: 9490048 [TBL] [Abstract][Full Text] [Related]
11. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. Pascarella S; Schirch V; Bossa F FEBS Lett; 1993 Sep; 331(1-2):145-9. PubMed ID: 8405393 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a putative aspartate aminotransferase belonging to subgroup IV. Katsura Y; Shirouzu M; Yamaguchi H; Ishitani R; Nureki O; Kuramitsu S; Hayashi H; Yokoyama S Proteins; 2004 May; 55(3):487-92. PubMed ID: 15103612 [TBL] [Abstract][Full Text] [Related]
14. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
15. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. Jeffery CJ; Gloss LM; Petsko GA; Ringe D Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649 [TBL] [Abstract][Full Text] [Related]
16. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
17. How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase. Rothman SC; Kirsch JF J Mol Biol; 2003 Mar; 327(3):593-608. PubMed ID: 12634055 [TBL] [Abstract][Full Text] [Related]
18. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
19. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Onuffer JJ; Kirsch JF Protein Sci; 1995 Sep; 4(9):1750-7. PubMed ID: 8528073 [TBL] [Abstract][Full Text] [Related]
20. Significant improvement to the catalytic properties of aspartate aminotransferase: role of hydrophobic and charged residues in the substrate binding pocket. Köhler E; Seville M; Jäger J; Fotheringham I; Hunter M; Edwards M; Jansonius JN; Kirschner K Biochemistry; 1994 Jan; 33(1):90-7. PubMed ID: 7904477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]