BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19176762)

  • 1. The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels.
    Romanenko VG; Roser KS; Melvin JE; Begenisich T
    Am J Physiol Cell Physiol; 2009 Apr; 296(4):C878-88. PubMed ID: 19176762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel.
    Thompson J; Begenisich T
    J Gen Physiol; 2006 Feb; 127(2):159-69. PubMed ID: 16418402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caveolae facilitate TRPV4-mediated Ca
    Li Y; Hu H; O'Neil RG
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1626-F1636. PubMed ID: 30207167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification and physiological roles of parotid acinar cell maxi-K channels.
    Romanenko V; Nakamoto T; Srivastava A; Melvin JE; Begenisich T
    J Biol Chem; 2006 Sep; 281(38):27964-72. PubMed ID: 16873365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current.
    Brainard AM; Miller AJ; Martens JR; England SK
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C49-57. PubMed ID: 15703204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands.
    Romanenko VG; Nakamoto T; Srivastava A; Begenisich T; Melvin JE
    J Physiol; 2007 Jun; 581(Pt 2):801-17. PubMed ID: 17379640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
    Romanenko VG; Thompson J; Begenisich T
    Channels (Austin); 2010; 4(4):278-88. PubMed ID: 20519930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic coupling between TRPV4 and Ca
    Li Y; Hu H; Tian JB; Zhu MX; O'Neil RG
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1081-F1089. PubMed ID: 28274924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular identification of Ca2+-activated K+ channels in parotid acinar cells.
    Nehrke K; Quinn CC; Begenisich T
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C535-46. PubMed ID: 12388098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SK4/IK1-like channels mediate TEA-insensitive, Ca2+-activated K+ currents in bovine parotid acinar cells.
    Takahata T; Hayashi M; Ishikawa T
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C127-44. PubMed ID: 12388063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland.
    Nakamoto T; Romanenko VG; Takahashi A; Begenisich T; Melvin JE
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C810-9. PubMed ID: 18216162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolae Link Ca
    Hashad AM; Harraz OF; Brett SE; Romero M; Kassmann M; Puglisi JL; Wilson SM; Gollasch M; Welsh DG
    Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2371-2381. PubMed ID: 30354206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells.
    Brainard AM; Korovkina VP; England SK
    Reprod Biol Endocrinol; 2009 Nov; 7():131. PubMed ID: 19930645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation.
    Abdullaev IF; Rudkouskaya A; Mongin AA; Kuo YH
    PLoS One; 2010 Aug; 5(8):e12304. PubMed ID: 20808839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes.
    Shmygol A; Noble K; Wray S
    J Physiol; 2007 Jun; 581(Pt 2):445-56. PubMed ID: 17331986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of methyl beta-cyclodextrin on EDHF responses in pig and rat arteries; association between SK(Ca) channels and caveolin-rich domains.
    Absi M; Burnham MP; Weston AH; Harno E; Rogers M; Edwards G
    Br J Pharmacol; 2007 Jun; 151(3):332-40. PubMed ID: 17450174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4.
    Flores CA; Melvin JE; Figueroa CD; Sepúlveda FV
    J Physiol; 2007 Sep; 583(Pt 2):705-17. PubMed ID: 17584847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels.
    Sones WR; Davis AJ; Leblanc N; Greenwood IA
    Cardiovasc Res; 2010 Aug; 87(3):476-84. PubMed ID: 20172862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolar disruption with methyl-β-cyclodextrin causes endothelium-dependent contractions in Wistar rat carotid arteries.
    Albrakati A
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63071-63080. PubMed ID: 35445923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.
    Irnaten M; Barry RC; Quill B; Clark AF; Harvey BJ; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):194-202. PubMed ID: 18775862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.