These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19176798)

  • 1. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis.
    Chang WP; Südhof TC
    J Neurosci; 2009 Jan; 29(4):883-97. PubMed ID: 19176798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis.
    Kaeser-Woo YJ; Yang X; Südhof TC
    J Neurosci; 2012 Feb; 32(8):2877-85. PubMed ID: 22357870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of exocytosis or endocytosis blocks activity-dependent redistribution of synapsin.
    Orenbuch A; Shulman Y; Lipstein N; Bechar A; Lavy Y; Brumer E; Vasileva M; Kahn J; Barki-Harrington L; Kuner T; Gitler D
    J Neurochem; 2012 Jan; 120(2):248-58. PubMed ID: 22066784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission.
    Raingo J; Khvotchev M; Liu P; Darios F; Li YC; Ramirez DM; Adachi M; Lemieux P; Toth K; Davletov B; Kavalali ET
    Nat Neurosci; 2012 Mar; 15(5):738-45. PubMed ID: 22406549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SV2 regulates neurotransmitter release via multiple mechanisms.
    Nowack A; Yao J; Custer KL; Bajjalieh SM
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C960-7. PubMed ID: 20702688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotrafficking of SV2 and synaptotagmin at the synapse.
    Yao J; Nowack A; Kensel-Hammes P; Gardner RG; Bajjalieh SM
    J Neurosci; 2010 Apr; 30(16):5569-78. PubMed ID: 20410110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release.
    Atlas D; Wiser O; Trus M
    Cell Mol Neurobiol; 2001 Dec; 21(6):717-31. PubMed ID: 12043844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles.
    Yao J; Kwon SE; Gaffaney JD; Dunning FM; Chapman ER
    Nat Neurosci; 2011 Dec; 15(2):243-9. PubMed ID: 22197832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I.
    Liu H; Dean C; Arthur CP; Dong M; Chapman ER
    J Neurosci; 2009 Jun; 29(23):7395-403. PubMed ID: 19515907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis.
    Sugita S; Han W; Butz S; Liu X; Fernández-Chacón R; Lao Y; Südhof TC
    Neuron; 2001 May; 30(2):459-73. PubMed ID: 11395007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses.
    Luo F; Bacaj T; Südhof TC
    J Neurosci; 2015 Aug; 35(31):11024-33. PubMed ID: 26245964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic vesicle protein 2 enhances release probability at quiescent synapses.
    Custer KL; Austin NS; Sullivan JM; Bajjalieh SM
    J Neurosci; 2006 Jan; 26(4):1303-13. PubMed ID: 16436618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis.
    Kobbersmed JRL; Berns MMM; Ditlevsen S; Sørensen JB; Walter AM
    Elife; 2022 Aug; 11():. PubMed ID: 35929728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles.
    Bacaj T; Wu D; Burré J; Malenka RC; Liu X; Südhof TC
    PLoS Biol; 2015 Oct; 13(10):e1002267. PubMed ID: 26437117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles.
    Kwon SE; Chapman ER
    J Biol Chem; 2012 Oct; 287(42):35658-35668. PubMed ID: 22908222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SV2 modulates the size of the readily releasable pool of secretory vesicles.
    Xu T; Bajjalieh SM
    Nat Cell Biol; 2001 Aug; 3(8):691-8. PubMed ID: 11483953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SVOP, an evolutionarily conserved synaptic vesicle protein, suggests novel transport functions of synaptic vesicles.
    Janz R; Hofmann K; Südhof TC
    J Neurosci; 1998 Nov; 18(22):9269-81. PubMed ID: 9801366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.
    Sara Y; Virmani T; Deák F; Liu X; Kavalali ET
    Neuron; 2005 Feb; 45(4):563-73. PubMed ID: 15721242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SV2B regulates synaptotagmin 1 by direct interaction.
    Lazzell DR; Belizaire R; Thakur P; Sherry DM; Janz R
    J Biol Chem; 2004 Dec; 279(50):52124-31. PubMed ID: 15466855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.