BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19176889)

  • 1. Swelling-activated transport of taurine in cultured gill cells of sea bass: physiological adaptation and pavement cell plasticity.
    Avella M; Ducoudret O; Pisani DF; Poujeol P
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1149-60. PubMed ID: 19176889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channels in primary cultures of seawater fish gill cells. II. Channel activation by hypotonic shock.
    Duranton C; Mikulovic E; Tauc M; Avella M; Poujeol P
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1659-70. PubMed ID: 11049848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish gill respiratory cells in culture: a new model for Cl(-)-secreting epithelia.
    Avella M; Ehrenfeld J
    J Membr Biol; 1997 Mar; 156(1):87-97. PubMed ID: 9070467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling-activated taurine and K+ transport in human cervical cancer cells: association with cell cycle progression.
    Shen MR; Chou CY; Ellory JC
    Pflugers Arch; 2001 Mar; 441(6):787-95. PubMed ID: 11316262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills.
    Leguen I; Prunet P
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):259-69. PubMed ID: 15123200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of three pathways for osmolyte efflux in human erythroleukemia cells.
    Huang CC; Hall AC; Lim PH
    Life Sci; 2007 Aug; 81(9):732-9. PubMed ID: 17698149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells.
    Tomassen SF; Fekkes D; de Jonge HR; Tilly BC
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1417-22. PubMed ID: 14960416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase.
    Holm JB; Grygorczyk R; Lambert IH
    Am J Physiol Cell Physiol; 2013 Jul; 305(1):C48-60. PubMed ID: 23485709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100.
    Basavappa S; Huang CC; Mangel AW; Lebedev DV; Knauf PA; Ellory JC
    J Neurophysiol; 1996 Aug; 76(2):764-9. PubMed ID: 8871197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells.
    Manolopoulos VG; Voets T; Declercq PE; Droogmans G; Nilius B
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C214-22. PubMed ID: 9252459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes.
    Lewis RA; Bursell JD; Kirk K
    J Membr Biol; 1996 Jan; 149(2):103-11. PubMed ID: 8834117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation by extracellular Cl- of volume-activated organic osmolyte and halide permeabilities in HeLa cells.
    Stutzin A; Eguiguren AL; Cid LP; Sepúlveda FV
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C999-1007. PubMed ID: 9316421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells.
    Ullrich N; Caplanusi A; Brône B; Hermans D; Larivière E; Nilius B; Van Driessche W; Eggermont J
    Am J Physiol Cell Physiol; 2006 May; 290(5):C1287-96. PubMed ID: 16338968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-activated taurine transport is differentially activated in human cervical cancer HT-3 cells but not in human papillomavirus-immortalized Z183A and normal cervical epithelial cells.
    Chou CY; Shen MR; Chen TM; Huang KE
    Clin Exp Pharmacol Physiol; 1997 Dec; 24(12):935-9. PubMed ID: 9406659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the taurine transport pathway in A6 kidney cells.
    Schmieder S; Soriani O; Brochiero E; Raschi C; Bogliolo S; Lindenthal S; Ehrenfeld J
    J Membr Biol; 2002 Nov; 190(2):145-58. PubMed ID: 12474079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation.
    Lorin-Nebel C; Boulo V; Bodinier C; Charmantier G
    J Exp Biol; 2006 Dec; 209(Pt 24):4908-22. PubMed ID: 17142680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integumental taurine transport in Mytilus gill: short-term adaptation to reduced salinity.
    Silva AL; Wright SH
    J Exp Biol; 1992 Jan; 162():265-79. PubMed ID: 1552279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway.
    Ruhfus B; Kinne RK
    Kidney Blood Press Res; 1996; 19(6):317-24. PubMed ID: 8990043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels.
    Ordaz B; Vaca L; Franco R; Pasantes-Morales H
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1399-409. PubMed ID: 14736709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes.
    Parkerson KA; Sontheimer H
    Glia; 2004 May; 46(4):419-36. PubMed ID: 15095372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.