These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 19177008)
1. In vivo measurement of signaling cascade dynamics. McClean MN; Hersen P; Ramanathan S Cell Cycle; 2009 Feb; 8(3):373-6. PubMed ID: 19177008 [TBL] [Abstract][Full Text] [Related]
2. Signal processing by the HOG MAP kinase pathway. Hersen P; McClean MN; Mahadevan L; Ramanathan S Proc Natl Acad Sci U S A; 2008 May; 105(20):7165-70. PubMed ID: 18480263 [TBL] [Abstract][Full Text] [Related]
3. Measuring in vivo signaling kinetics in a mitogen-activated kinase pathway using dynamic input stimulation. McClean MN; Hersen P; Ramanathan S Methods Mol Biol; 2011; 734():101-19. PubMed ID: 21468987 [TBL] [Abstract][Full Text] [Related]
4. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Martin-Yken H; Dagkessamanskaia A; Basmaji F; Lagorce A; Francois J Mol Microbiol; 2003 Jul; 49(1):23-35. PubMed ID: 12823808 [TBL] [Abstract][Full Text] [Related]
5. The UV response in Saccharomyces cerevisiae involves the mitogen-activated protein kinase Slt2p. Bryan BA; Knapp GS; Bowen LM; Polymenis M Curr Microbiol; 2004 Jul; 49(1):32-4. PubMed ID: 15297927 [TBL] [Abstract][Full Text] [Related]
6. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381 [TBL] [Abstract][Full Text] [Related]
7. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. Groves B; Khakhar A; Nadel CM; Gardner RG; Seelig G Elife; 2016 Aug; 5():. PubMed ID: 27525484 [TBL] [Abstract][Full Text] [Related]
8. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. Takayama T; Yamamoto K; Saito H; Tatebayashi K PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143 [TBL] [Abstract][Full Text] [Related]
9. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating. Nelson B; Parsons AB; Evangelista M; Schaefer K; Kennedy K; Ritchie S; Petryshen TL; Boone C Genetics; 2004 Jan; 166(1):67-77. PubMed ID: 15020407 [TBL] [Abstract][Full Text] [Related]
10. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae. Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843 [TBL] [Abstract][Full Text] [Related]
11. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift. Choi MY; Park SH Appl Microbiol Biotechnol; 2016 Jun; 100(11):4997-5005. PubMed ID: 26837218 [TBL] [Abstract][Full Text] [Related]
12. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660 [TBL] [Abstract][Full Text] [Related]
13. When the stress of your environment makes you go HOG wild. Westfall PJ; Ballon DR; Thorner J Science; 2004 Nov; 306(5701):1511-2. PubMed ID: 15567851 [TBL] [Abstract][Full Text] [Related]
14. Signal integration in budding yeast. Waltermann C; Klipp E Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295 [TBL] [Abstract][Full Text] [Related]
15. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae. Schmidt M; Akasaka K; Messerly JT; Boyer MP Microbiology (Reading); 2012 Oct; 158(Pt 10):2667-2678. PubMed ID: 22902726 [TBL] [Abstract][Full Text] [Related]
16. Yeast go the whole HOG for the hyperosmotic response. O'Rourke SM; Herskowitz I; O'Shea EK Trends Genet; 2002 Aug; 18(8):405-12. PubMed ID: 12142009 [TBL] [Abstract][Full Text] [Related]
17. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae. Shim E; Park SH Biochem Biophys Res Commun; 2014 Jan; 443(1):252-8. PubMed ID: 24309106 [TBL] [Abstract][Full Text] [Related]
19. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Maleri S; Ge Q; Hackett EA; Wang Y; Dohlman HG; Errede B Mol Cell Biol; 2004 Oct; 24(20):9221-38. PubMed ID: 15456892 [TBL] [Abstract][Full Text] [Related]
20. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele. Westfall PJ; Thorner J Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]