These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1917716)

  • 21. Efferent-mediated protection of the cochlear base from acoustic overexposure by low doses of lithium.
    Horner KC; Higueret D; Cazals Y
    Eur J Neurosci; 1998 Apr; 10(4):1524-7. PubMed ID: 9749806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones.
    Kirk DL; Moleirinho A; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):69-86. PubMed ID: 9367230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the cochlear efferent system on chronic acoustic trauma.
    Zheng XY; Henderson D; Hu BH; Ding DL; McFadden SL
    Hear Res; 1997 May; 107(1-2):147-59. PubMed ID: 9165355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential.
    Pierson MG; Møller AR
    Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term effectiveness of medial efferents does not predict susceptibility to temporary threshold shift in the guinea pig.
    Zennaro O; Erre JP; Aran JM; Dauman R
    Acta Otolaryngol; 1998 Sep; 118(5):681-4. PubMed ID: 9840504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latency of contralateral sound-evoked auditory efferent suppression of otoacoustic emissions.
    Hill JC; Prasher DK; Luxon LM
    Acta Otolaryngol; 1997 May; 117(3):343-51. PubMed ID: 9199519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additivity of loud-sound--induced threshold losses in the cat under conditions of active or inactive cochlear efferent-mediated protection.
    Rajan R
    J Neurophysiol; 1996 Apr; 75(4):1601-18. PubMed ID: 8727399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sectioning the efferent bundle decreases cochlear frequency selectivity.
    Carlier E; Pujol R
    Neurosci Lett; 1982 Jan; 28(1):101-6. PubMed ID: 7063139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saturation of outer hair cell receptor currents causes two-tone suppression.
    Geisler CD; Yates GK; Patuzzi RB; Johnstone BM
    Hear Res; 1990 Mar; 44(2-3):241-56. PubMed ID: 2329097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increase in cochlear microphonic potential after toluene administration.
    Lataye R; Maguin K; Campo P
    Hear Res; 2007 Aug; 230(1-2):34-42. PubMed ID: 17555896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efferent-mediated suppression of otoacoustic emissions in awake guinea pigs and its reversible blockage by gentamicin.
    Avan P; Erre JP; da Costa DL; Aran JM; Popelár J
    Exp Brain Res; 1996 Apr; 109(1):9-16. PubMed ID: 8740203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of endocochlear potential suppression upon susceptibility to acoustic trauma.
    Kanno H; Ohtani I; Hara A; Kusakari J
    Acta Otolaryngol; 1993 Jan; 113(1):26-30. PubMed ID: 8442418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medial olivocochlear efferent terminals are protected by sound conditioning.
    Canlon B; Fransson A; Viberg A
    Brain Res; 1999 Dec; 850(1-2):253-60. PubMed ID: 10629772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of acoustic overstimulation of 2F1-F2 distortion product in cochlear microphonics].
    Yoshida M; Aoyagi M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Apr; 97(4):680-3. PubMed ID: 8189316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brief report: the cochlear microphonic as an indication of outer hair cell function.
    Withnell RH
    Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
    Wang J; Dib M; Lenoir M; Vago P; Eybalin M; Hameg A; Pujol R; Puel JL
    Neuroscience; 2002; 111(3):635-48. PubMed ID: 12031350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system.
    Christopher Kirk E; Smith DW
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):445-65. PubMed ID: 12784134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig.
    Mountain DC; Geisler CD; Hubbard AE
    Hear Res; 1980 Oct; 3(3):231-40. PubMed ID: 7440426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.