These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Evidence of a nonlinear human magnetic sense. Carrubba S; Frilot C; Chesson AL; Marino AA Neuroscience; 2007 Jan; 144(1):356-67. PubMed ID: 17069982 [TBL] [Abstract][Full Text] [Related]
5. Sensory transduction of weak electromagnetic fields: role of glutamate neurotransmission mediated by NMDA receptors. Frilot C; Carrubba S; Marino AA Neuroscience; 2014 Jan; 258():184-91. PubMed ID: 24239718 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields. Carrubba S; Frilot C; Chesson AL; Marino AA Neurosci Lett; 2007 May; 417(2):212-6. PubMed ID: 17350168 [TBL] [Abstract][Full Text] [Related]
7. Evidence that transduction of electromagnetic field is mediated by a force receptor. Marino AA; Carrubba S; Frilot C; Chesson AL Neurosci Lett; 2009 Mar; 452(2):119-23. PubMed ID: 19383425 [TBL] [Abstract][Full Text] [Related]
8. The electric field is a sufficient physical determinant of the human magnetic sense. Carrubba S; Frilot C; Hart FX; Chesson AL; Marino AA Int J Radiat Biol; 2009 Jul; 85(7):622-32. PubMed ID: 19557602 [TBL] [Abstract][Full Text] [Related]
9. The effects of low-frequency environmental-strength electromagnetic fields on brain electrical activity: a critical review of the literature. Carrubba S; Marino AA Electromagn Biol Med; 2008; 27(2):83-101. PubMed ID: 18568928 [TBL] [Abstract][Full Text] [Related]
10. Absence of daytime 50 Hz, 100 microT(rms) magnetic field or bright light exposure effect on human performance and psychophysiological parameters. Crasson M; Legros JJ Bioelectromagnetics; 2005 Apr; 26(3):225-33. PubMed ID: 15768425 [TBL] [Abstract][Full Text] [Related]
12. [Effect of impulse extrabroad-band electromagnetic radiation on electroencephalogram and sleep in laboratory animals]. Petrova EV; Guliaeva NV; Titarov SI; Rozhnov IuV; Koval'zon VM Ross Fiziol Zh Im I M Sechenova; 2003 Jul; 89(7):786-94. PubMed ID: 14758614 [TBL] [Abstract][Full Text] [Related]
13. Small animal positron emission tomography during vagus nerve stimulation in rats: a pilot study. Dedeurwaerdere S; Cornelissen B; Van Laere K; Vonck K; Achten E; Slegers G; Boon P Epilepsy Res; 2005 Dec; 67(3):133-41. PubMed ID: 16289508 [TBL] [Abstract][Full Text] [Related]
14. MicroPET study of brain neuronal metabolism under electrical and mechanical stimulation of the rat tail. Chen YY; Shih YY; Chien CN; Chou TW; Lee TW; Jaw FS Nucl Med Commun; 2009 Mar; 30(3):188-93. PubMed ID: 19262279 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of evoked local field potentials in the hippocampus of epileptic rats with spontaneous seizures. Queiroz CM; Gorter JA; Lopes da Silva FH; Wadman WJ J Neurophysiol; 2009 Mar; 101(3):1588-97. PubMed ID: 18842951 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis of recurrence plots to detect effect of environmental-strength magnetic fields on human brain electrical activity. Carrubba S; Frilot C; Chesson AL; Marino AA Med Eng Phys; 2010 Oct; 32(8):898-907. PubMed ID: 20634119 [TBL] [Abstract][Full Text] [Related]
17. Biological characters of [18F]O-FEt-PIB in a rat model of Alzheimer's disease using micro-PET imaging. Zheng MQ; Yin DZ; Zhang L; Lei B; Cheng DF; Cai HC; Han YJ; Wu MX; Zhang H; Wang J Acta Pharmacol Sin; 2008 May; 29(5):548-54. PubMed ID: 18430362 [TBL] [Abstract][Full Text] [Related]
19. MicroPET detection of enhanced 18F-FDG utilization by PKA inhibitor in awake rat brain. Hosoi R; Matsumura A; Mizokawa S; Tanaka M; Nakamura F; Kobayashi K; Watanabe Y; Inoue O Brain Res; 2005 Mar; 1039(1-2):199-202. PubMed ID: 15781062 [TBL] [Abstract][Full Text] [Related]
20. Neural responses of rats in the forced swimming test: [F-18]FDG micro PET study. Jang DP; Lee SH; Lee SY; Park CW; Cho ZH; Kim YB Behav Brain Res; 2009 Oct; 203(1):43-7. PubMed ID: 19394368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]