These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 19177648)
21. Permanent, non-leaching antibacterial surface--2: how high density cationic surfaces kill bacterial cells. Murata H; Koepsel RR; Matyjaszewski K; Russell AJ Biomaterials; 2007 Nov; 28(32):4870-9. PubMed ID: 17706762 [TBL] [Abstract][Full Text] [Related]
22. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. Pranantyo D; Xu LQ; Neoh KG; Kang ET; Ng YX; Teo SL Biomacromolecules; 2015 Mar; 16(3):723-32. PubMed ID: 25650890 [TBL] [Abstract][Full Text] [Related]
23. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion. Yuan SJ; Pehkonen SO; Ting YP; Neoh KG; Kang ET ACS Appl Mater Interfaces; 2009 Mar; 1(3):640-52. PubMed ID: 20355986 [TBL] [Abstract][Full Text] [Related]
24. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
25. Preparation of poly(epsilon-caprolactone) brushes at the surface of conducting substrates. Voccia S; Bech L; Gilbert B; Jérôme R; Jérôme C Langmuir; 2004 Nov; 20(24):10670-8. PubMed ID: 15544400 [TBL] [Abstract][Full Text] [Related]
26. Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. Sin MC; Sun YM; Chang Y ACS Appl Mater Interfaces; 2014 Jan; 6(2):861-73. PubMed ID: 24351074 [TBL] [Abstract][Full Text] [Related]
27. Barnacle cement as surface anchor for "clicking" of antifouling and antimicrobial polymer brushes on stainless steel. Yang WJ; Cai T; Neoh KG; Kang ET; Teo SL; Rittschof D Biomacromolecules; 2013 Jun; 14(6):2041-51. PubMed ID: 23641901 [TBL] [Abstract][Full Text] [Related]
28. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806 [TBL] [Abstract][Full Text] [Related]
29. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related]
30. Grafting of poly[2-(tert-butylamino)ethyl methacrylate] onto polypropylene by reactive blending and antibacterial activity of the copolymer. Thomassin JM; Lenoir S; Riga J; Jérôme R; Detrembleur C Biomacromolecules; 2007 Apr; 8(4):1171-7. PubMed ID: 17348705 [TBL] [Abstract][Full Text] [Related]
31. Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition. Jing FJ; Huang N; Liu YW; Zhang W; Zhao XB; Fu RK; Wang JB; Shao ZY; Chen JY; Leng YX; Liu XY; Chu PK J Biomed Mater Res A; 2008 Dec; 87(4):1027-33. PubMed ID: 18257083 [TBL] [Abstract][Full Text] [Related]
33. Adsorption behavior of methylene blue and its congeners on a stainless steel surface. Imamura K; Ikeda E; Nagayasu T; Sakiyama T; Nakanishi K J Colloid Interface Sci; 2002 Jan; 245(1):50-7. PubMed ID: 16290334 [TBL] [Abstract][Full Text] [Related]
34. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z; Chen S; Chang Y; Jiang S J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329 [TBL] [Abstract][Full Text] [Related]
35. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films. Bernbom N; Ng YY; Jørgensen RL; Arpanaei A; Meyer RL; Kingshott P; Vejborg RM; Klemm P; Gram L J Appl Microbiol; 2009 Apr; 106(4):1268-79. PubMed ID: 19187146 [TBL] [Abstract][Full Text] [Related]
36. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Mizutani M; Palermo EF; Thoma LM; Satoh K; Kamigaito M; Kuroda K Biomacromolecules; 2012 May; 13(5):1554-63. PubMed ID: 22497522 [TBL] [Abstract][Full Text] [Related]
37. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993 [TBL] [Abstract][Full Text] [Related]
38. Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity. Caro A; Humblot V; Méthivier C; Minier M; Barbes L; Li J; Salmain M; Pradier CM J Colloid Interface Sci; 2010 Sep; 349(1):13-8. PubMed ID: 20566201 [TBL] [Abstract][Full Text] [Related]
39. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. Cringus-Fundeanu I; Luijten J; van der Mei HC; Busscher HJ; Schouten AJ Langmuir; 2007 Apr; 23(9):5120-6. PubMed ID: 17388616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]