BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19178275)

  • 21. Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques.
    Höök F; Stengel G; Dahlin AB; Gunnarsson A; Jonsson MP; Jönsson P; Reimhult E; Simonsson L; Svedhem S
    Biointerphases; 2008 Jun; 3(2):FA108. PubMed ID: 20408659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supported lipid bilayers with controlled curvature via colloidal lithography.
    Sundh M; Manandhar M; Svedhem S; Sutherland DS
    IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of lipid-bilayer-associated molecules on lipid-vesicle adsorption.
    Dimitrievski K
    Langmuir; 2010 Apr; 26(8):5706-14. PubMed ID: 19968253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics.
    Mashaghi A; Swann M; Popplewell J; Textor M; Reimhult E
    Anal Chem; 2008 May; 80(10):3666-76. PubMed ID: 18422336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supported lipid bilayer microarrays created by non-contact printing.
    Kaufmann S; Sobek J; Textor M; Reimhult E
    Lab Chip; 2011 Jul; 11(14):2403-10. PubMed ID: 21623437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and diffusivity characterization of supported lipid bilayers with complex lipid compositions.
    Simonsson L; Höök F
    Langmuir; 2012 Jul; 28(28):10528-33. PubMed ID: 22703549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quartz crystal microbalances as tools for probing protein-membrane interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2013; 974():1-21. PubMed ID: 23404269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alpha-helical peptide-induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry.
    Cho NJ; Wang G; Edvardsson M; Glenn JS; Hook F; Frank CW
    Anal Chem; 2009 Jun; 81(12):4752-61. PubMed ID: 19459601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.
    Drazenovic J; Ahmed S; Tuzinkiewicz NM; Wunder SL
    Langmuir; 2015 Jan; 31(2):721-31. PubMed ID: 25425021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of oligonucleotide modifications of small unilamellar lipid vesicles.
    Pfeiffer I; Höök F
    Anal Chem; 2006 Nov; 78(21):7493-8. PubMed ID: 17073417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface.
    Cho NJ; Kanazawa KK; Glenn JS; Frank CW
    Anal Chem; 2007 Sep; 79(18):7027-35. PubMed ID: 17685547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ferritin-supported lipid bilayers for triggering the endothelial cell response.
    Satriano C; Lupo G; Motta C; Anfuso CD; Di Pietro P; Kasemo B
    Colloids Surf B Biointerfaces; 2017 Jan; 149():48-55. PubMed ID: 27718396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein adsorption on supported phospholipid bilayers.
    Glasmästar K; Larsson C; Höök F; Kasemo B
    J Colloid Interface Sci; 2002 Feb; 246(1):40-7. PubMed ID: 16290382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface response methodology for the study of supported membrane formation.
    Rossi C; Briand E; Parot P; Odorico M; Chopineau J
    J Phys Chem B; 2007 Jul; 111(26):7567-76. PubMed ID: 17567062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of High-Negatively Charged Bicelle-Mediated Supported Lipid Bilayer.
    Zhao J; Zhao L; Xu W; Lu Z; Xu S
    Langmuir; 2024 Apr; 40(15):8083-8093. PubMed ID: 38572682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of nanotopography on phospholipid bilayer formation on silicon dioxide.
    Pfeiffer I; Seantier B; Petronis S; Sutherland D; Kasemo B; Zäch M
    J Phys Chem B; 2008 Apr; 112(16):5175-81. PubMed ID: 18370429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomembrane Fabrication by the Solvent-assisted Lipid Bilayer (SALB) Method.
    Tabaei SR; Jackman JA; Kim M; Yorulmaz S; Vafaei S; Cho NJ
    J Vis Exp; 2015 Dec; (106):. PubMed ID: 26650537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tethered Lipid Bilayers within Porous Si Nanostructures: A Platform for (Optical) Real-Time Monitoring of Membrane-Associated Processes.
    Tenenbaum E; Ben-Dov N; Segal E
    Langmuir; 2015 May; 31(18):5244-51. PubMed ID: 25902286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.