These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1917832)

  • 61. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.
    Sueoka K; Yamazaki T; Hiyama T; Nakamoto H
    Biochem Biophys Res Commun; 2009 Mar; 380(3):520-4. PubMed ID: 19250645
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene.
    Gladyshev VN; Jeang KT; Stadtman TC
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6146-51. PubMed ID: 8650234
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds.
    Gromer S; Arscott LD; Williams CH; Schirmer RH; Becker K
    J Biol Chem; 1998 Aug; 273(32):20096-101. PubMed ID: 9685351
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurement of thioredoxin and thioredoxin reductase.
    Arnér ES; Holmgren A
    Curr Protoc Toxicol; 2001 May; Chapter 7():Unit 7.4.. PubMed ID: 20954152
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Initial Step of Selenite Reduction via Thioredoxin for Bacterial Selenoprotein Biosynthesis.
    Shimizu A; Tobe R; Aono R; Inoue M; Hagita S; Kiriyama K; Toyotake Y; Ogawa T; Kurihara T; Goto K; Prakash NT; Mihara H
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681630
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex.
    Sliwkowski MX; Stadtman TC
    J Biol Chem; 1987 Apr; 262(10):4899-904. PubMed ID: 2951374
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Purification and comparative studies of dihydrolipoamide dehydrogenases from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes.
    Dietrichs D; Andreesen JR
    J Bacteriol; 1990 Jan; 172(1):243-51. PubMed ID: 2294086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Properties of the endogenous components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125.
    Falasca P; Evangelista G; Cotugno R; Marco S; Masullo M; De Vendittis E; Raimo G
    Extremophiles; 2012 May; 16(3):539-52. PubMed ID: 22527046
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and function of the putative thioredoxin 1 from the thermophilic eubacterium Thermosipho africanus strain TCF52B.
    Sahtout N; Kuttiyatveetil JRA; Sanders DAR
    Biochim Biophys Acta Proteins Proteom; 2019 Apr; 1867(4):426-433. PubMed ID: 30716506
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethyl-selenoprotein A.
    Stadtman TC; Davis JN
    J Biol Chem; 1991 Nov; 266(33):22147-53. PubMed ID: 1939235
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selenium biochemistry.
    Stadtman TC
    Science; 1974 Mar; 183(4128):915-22. PubMed ID: 4605100
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase.
    Moos PJ; Edes K; Cassidy P; Massuda E; Fitzpatrick FA
    J Biol Chem; 2003 Jan; 278(2):745-50. PubMed ID: 12424231
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineering of fluorescent reporters into redox domains to monitor electron transfers.
    Parsonage D; Reeves SA; Karplus PA; Poole LB
    Methods Enzymol; 2010; 474():1-21. PubMed ID: 20609901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Purification of selenoprotein P from human plasma.
    Akesson B; Bellew T; Burk RF
    Biochim Biophys Acta; 1994 Feb; 1204(2):243-9. PubMed ID: 8142465
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction.
    Schwartz AC; Quecke W; Brenschede G
    Z Allg Mikrobiol; 1979; 19(3):211-20. PubMed ID: 516795
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of growth conditions on glycine reductase of Clostridium sporogenes.
    Venugopalan V
    J Bacteriol; 1980 Jan; 141(1):386-8. PubMed ID: 7354004
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparation and assay of mammalian thioredoxin and thioredoxin reductase.
    Arnér ES; Zhong L; Holmgren A
    Methods Enzymol; 1999; 300():226-39. PubMed ID: 9919525
    [No Abstract]   [Full Text] [Related]  

  • 78. Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in stickland reaction systems.
    Costilow RN
    J Bacteriol; 1977 Jul; 131(1):366-8. PubMed ID: 873891
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate.
    Krumholz LR; Crawford RL; Hemling ME; Bryant MP
    J Bacteriol; 1987 May; 169(5):1886-90. PubMed ID: 3571153
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Purine and glycine metabolism by purinolytic clostridia.
    Dürre P; Andreesen JR
    J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.