These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19178337)

  • 1. Three-dimensional in situ temperature measurement in microsystems using Brownian motion of nanoparticles.
    Chung K; Cho JK; Park ES; Breedveld V; Lu H
    Anal Chem; 2009 Feb; 81(3):991-9. PubMed ID: 19178337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.
    Werts MH; Raimbault V; Texier-Picard R; Poizat R; Français O; Griscom L; Navarro JR
    Lab Chip; 2012 Feb; 12(4):808-20. PubMed ID: 22228225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles.
    Idris NM; Li Z; Ye L; Sim EK; Mahendran R; Ho PC; Zhang Y
    Biomaterials; 2009 Oct; 30(28):5104-13. PubMed ID: 19539368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions.
    Chung K; Lee H; Lu H
    Lab Chip; 2009 Dec; 9(23):3345-53. PubMed ID: 19904399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R; Glawdel T; Ren CL
    Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on temperature measurement and control for microfluidic systems].
    Dai J; Fan XF; Fang J; Xu ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):148-52. PubMed ID: 18422140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation.
    Doerr D; Stark M; Ehrhart F; Zimmermann H; Stracke F
    Biotechnol J; 2009 Aug; 4(8):1215-20. PubMed ID: 19360710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Brownian traps for studies on single molecules.
    Fields AP; Cohen AE
    Methods Enzymol; 2010; 475():149-74. PubMed ID: 20627157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconvolution microscopy for flow visualization in microchannels.
    Xia Z; Cattafesta L; Fan ZH
    Anal Chem; 2007 Mar; 79(6):2576-82. PubMed ID: 17279728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined video fluorescence and 3D electron microscopy.
    Mironov AA; Polishchuk RS; Beznoussenko GV
    Methods Cell Biol; 2008; 88():83-95. PubMed ID: 18617029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy.
    Müller CB; Weiss K; Loman A; Enderlein J; Richtering W
    Lab Chip; 2009 May; 9(9):1248-53. PubMed ID: 19370244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassays in nanoliter volume reactors using fluorescent particle diffusometry.
    Gorti VM; Shang H; Wereley ST; Lee GU
    Langmuir; 2008 Mar; 24(6):2947-52. PubMed ID: 18294011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.
    Gineste JM; Macko P; Patterson EA; Whelan MP
    J Microsc; 2011 Aug; 243(2):172-8. PubMed ID: 21375530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and optical properties of fluorescent nanoparticles developed for intravascular imaging.
    Ravnic DJ; Zhang YZ; Turhan A; Tsuda A; Pratt JP; Huss HT; Mentzer SJ
    Microsc Res Tech; 2007 Sep; 70(9):776-81. PubMed ID: 17576122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of cardiomyocyte contraction based on image correlation analysis.
    Kamgoué A; Ohayon J; Usson Y; Riou L; Tracqui P
    Cytometry A; 2009 Apr; 75(4):298-308. PubMed ID: 19107827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic etching and oxime-based tailoring of biodegradable polyketoesters.
    Barrett DG; Lamb BM; Yousaf MN
    Langmuir; 2008 Sep; 24(17):9861-7. PubMed ID: 18646882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device.
    Koh CG; Kang X; Xie Y; Fei Z; Guan J; Yu B; Zhang X; Lee LJ
    Mol Pharm; 2009; 6(5):1333-42. PubMed ID: 19552481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and critical evaluation of fluorescent chloride nanosensors.
    Graefe A; Stanca SE; Nietzsche S; Kubicova L; Beckert R; Biskup C; Mohr GJ
    Anal Chem; 2008 Sep; 80(17):6526-31. PubMed ID: 18662018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.