These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 1917876)

  • 21. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water.
    Roeters SJ; Golbek TW; Bregnhøj M; Drace T; Alamdari S; Roseboom W; Kramer G; Šantl-Temkiv T; Finster K; Pfaendtner J; Woutersen S; Boesen T; Weidner T
    Nat Commun; 2021 Feb; 12(1):1183. PubMed ID: 33608518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).
    Michigami Y; Abe K; Obata H; Arai S
    J Biochem; 1995 Dec; 118(6):1279-84. PubMed ID: 8720147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments.
    Han YJ; Song H; Lee CW; Ly NH; Joo SW; Lee JH; Kim SJ; Park S
    Int J Biol Macromol; 2017 Jan; 94(Pt A):634-641. PubMed ID: 27773839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and recombinant expression of a divergent ice nucleation protein from 'Pseudomonas borealis'.
    Wu Z; Qin L; Walker VK
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1164-1169. PubMed ID: 19332818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties.
    Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J
    Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clustering of ice nucleation protein correlates with ice nucleation activity.
    Mueller GM; Wolber PK; Warren GJ
    Cryobiology; 1990 Aug; 27(4):416-22. PubMed ID: 2203606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial ice nucleation: significance and molecular basis.
    Gurian-Sherman D; Lindow SE
    FASEB J; 1993 Nov; 7(14):1338-43. PubMed ID: 8224607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae.
    Arvanitis N; Vargas C; Tegos G; Perysinakis A; Nieto JJ; Ventosa A; Drainas C
    Appl Environ Microbiol; 1995 Nov; 61(11):3821-5. PubMed ID: 8526492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and expression of a gene encoding a 48-residue repeat in the Pseudomonas syringae ice nucleation protein.
    Hine AV; Brown TA
    Gene; 1994 May; 142(1):73-8. PubMed ID: 8181760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial Ice Nucleators.
    Schwidetzky R; Sudera P; Backes AT; Pöschl U; Bonn M; Fröhlich-Nowoisky J; Meister K
    J Phys Chem Lett; 2021 Nov; 12(44):10783-10787. PubMed ID: 34723523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of single chain antibodies (ScFvs) for c-myc oncoprotein in recombinant Escherichia coli membranes by using the ice-nucleation protein of Pseudomonas syringae.
    Bassi AS; Ding DN; Gloor GB; Margaritis A
    Biotechnol Prog; 2000; 16(4):557-63. PubMed ID: 10933828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein.
    Jung HC; Park JH; Park SH; Lebeault JM; Pan JG
    Enzyme Microb Technol; 1998 Apr; 22(5):348-54. PubMed ID: 9549104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of hydroxylamine-induced mutations in the Erwinia herbicola ice nucleation gene that selectively reduce warm temperature ice nucleation activity.
    Gurian-Sherman D; Lindow SE; Panopoulos NJ
    Mol Microbiol; 1993 Jul; 9(2):383-91. PubMed ID: 8412688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and purification of a bacterial ice-nucleation protein.
    Wolber PK; Deininger CA; Southworth MW; Vandekerckhove J; van Montagu M; Warren GJ
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7256-60. PubMed ID: 3020542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice-nucleating bacteria control the order and dynamics of interfacial water.
    Pandey R; Usui K; Livingstone RA; Fischer SA; Pfaendtner J; Backus EH; Nagata Y; Fröhlich-Nowoisky J; Schmüser L; Mauri S; Scheel JF; Knopf DA; Pöschl U; Bonn M; Weidner T
    Sci Adv; 2016 Apr; 2(4):e1501630. PubMed ID: 27152346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release of cell-free ice nuclei by Erwinia herbicola.
    Phelps P; Giddings TH; Prochoda M; Fall R
    J Bacteriol; 1986 Aug; 167(2):496-502. PubMed ID: 3525514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola.
    Kozloff LM; Schofield MA; Lute M
    J Bacteriol; 1983 Jan; 153(1):222-31. PubMed ID: 6848483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agar plate freezing assay for the in situ selection of transformed ice nucleating bacteria.
    Anastassopoulos E
    Cryobiology; 2006 Oct; 53(2):276-8. PubMed ID: 16854406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rates of assembly and degradation of bacterial ice nuclei.
    Watanabe NM; Southworth MW; Warren GJ; Wolber PK
    Mol Microbiol; 1990 Nov; 4(11):1871-9. PubMed ID: 2127952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.