BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 19178912)

  • 1. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L; Lu D; Liu Z
    J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation.
    Zhang L; Zhao G; Sun Y
    J Phys Chem B; 2009 May; 113(19):6873-80. PubMed ID: 19374422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography.
    Zhang L; Bai S; Sun Y
    J Mol Graph Model; 2010 Jun; 28(8):863-9. PubMed ID: 20418134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation.
    Zhang L; Zhao G; Sun Y
    J Phys Chem B; 2010 Feb; 114(6):2203-11. PubMed ID: 20099834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory molecular driving force for protein folding at high concentration: a molecular simulation.
    Lu D; Liu Z
    J Phys Chem B; 2008 Mar; 112(9):2686-93. PubMed ID: 18266355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics for surfactant-assisted protein refolding.
    Lu D; Liu Z; Wu J
    J Chem Phys; 2007 Feb; 126(6):064906. PubMed ID: 17313243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein retention in hydrophobic interaction chromatography.
    Mahn A; Asenjo JA
    Biotechnol Adv; 2005 Jul; 23(5):359-68. PubMed ID: 15894452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC; Lenhoff AM
    J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic interaction chromatography: harnessing multivalent protein-surface interactions for purification procedures.
    Jennissen HP
    Methods Mol Biol; 2005; 305():81-99. PubMed ID: 15943009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current insights on protein behaviour in hydrophobic interaction chromatography.
    Lienqueo ME; Mahn A; Salgado JC; Asenjo JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):53-68. PubMed ID: 17141587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How native proteins aggregate in solution: a dynamic Monte Carlo simulation.
    Zhang L; Lu D; Liu Z
    Biophys Chem; 2008 Mar; 133(1-3):71-80. PubMed ID: 18206291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phenyl sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT; Engel P; Thömmes J
    J Chromatogr A; 2009 Feb; 1216(6):902-9. PubMed ID: 19100554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A shorter peptide model from staphylococcal nuclease for the folding-unfolding equilibrium of a beta-hairpin shows that unfolded state has significant contribution from compact conformational states.
    Patel S; Sasidhar YU
    J Struct Biol; 2008 Oct; 164(1):60-74. PubMed ID: 18602478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy landscapes for adsorption of a protein-like HP chain as a function of native-state stability.
    Liu SM; Haynes CA
    J Colloid Interface Sci; 2005 Apr; 284(1):7-13. PubMed ID: 15752778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation.
    Lu D; Liu Z
    J Phys Chem B; 2008 Nov; 112(47):15127-33. PubMed ID: 18959394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying process tradeoffs in the operation of chromatographic sequences.
    Ngiam SH; Bracewell DG; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2003; 19(4):1315-22. PubMed ID: 12892496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT; Engel P; Ng A; Macniven R; Thömmes J
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):261-75. PubMed ID: 18205016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of frustration, confinement, and surface interactions on the dimerization of an off-lattice beta-barrel protein.
    Griffin MA; Friedel M; Shea JE
    J Chem Phys; 2005 Nov; 123(17):174707. PubMed ID: 16375557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.
    Lu D; Yang C; Liu Z
    J Phys Chem B; 2012 Jan; 116(1):390-400. PubMed ID: 22118044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.