BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19179291)

  • 1. Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development.
    Alvarez-Delfin K; Morris AC; Snelson CD; Gamse JT; Gupta T; Marlow FL; Mullins MC; Burgess HA; Granato M; Fadool JM
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):2023-8. PubMed ID: 19179291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate.
    Duval MG; Oel AP; Allison WT
    PLoS One; 2014; 9(3):e92991. PubMed ID: 24681822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones.
    Raymond PA; Colvin SM; Jabeen Z; Nagashima M; Barthel LK; Hadidjojo J; Popova L; Pejaver VR; Lubensky DK
    PLoS One; 2014; 9(1):e85325. PubMed ID: 24465536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor Progenitors Depend Upon Coordination of gdf6a, thrβ, and tbx2b to Generate Precise Populations of Cone Photoreceptor Subtypes.
    DuVal MG; Allison WT
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):6089-6101. PubMed ID: 30592497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Photoreceptor Cell Identity: Rod Versus Cone Fate Governed by tbx2b Opposing nrl.
    Neil GJ; Kluttig KH; Allison WT
    Invest Ophthalmol Vis Sci; 2024 Jan; 65(1):39. PubMed ID: 38261312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockout of Nr2e3 prevents rod photoreceptor differentiation and leads to selective L-/M-cone photoreceptor degeneration in zebrafish.
    Xie S; Han S; Qu Z; Liu F; Li J; Yu S; Reilly J; Tu J; Liu X; Lu Z; Hu X; Yimer TA; Qin Y; Huang Y; Lv Y; Jiang T; Shu X; Tang Z; Jia H; Wong F; Liu M
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1273-1283. PubMed ID: 30684641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure.
    Stevens CB; Cameron DA; Stenkamp DL
    BMC Dev Biol; 2011 Aug; 11():51. PubMed ID: 21878117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish.
    Saade CJ; Alvarez-Delfin K; Fadool JM
    J Neurosci; 2013 Jan; 33(5):1804-14. PubMed ID: 23365220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish.
    Ochocinska MJ; Hitchcock PF
    J Comp Neurol; 2007 Mar; 501(1):1-12. PubMed ID: 17206615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dazed gene is necessary for late cell type development and retinal cell maintenance in the zebrafish retina.
    Perkins BD; Nicholas CS; Baye LM; Link BA; Dowling JE
    Dev Dyn; 2005 Jun; 233(2):680-94. PubMed ID: 15844196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex.
    Khuansuwan S; Clanton JA; Dean BJ; Patton JG; Gamse JT
    Development; 2016 Jul; 143(14):2641-50. PubMed ID: 27317804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.
    Sherry DM; Bui DD; Degrip WJ
    Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish.
    Nadolski NJ; Balay SD; Wong CXL; Waskiewicz AJ; Hocking JC
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):9. PubMed ID: 32293666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Her9/Hes4 is required for retinal photoreceptor development, maintenance, and survival.
    Coomer CE; Wilson SG; Titialii-Torres KF; Bills JD; Krueger LA; Petersen RA; Turnbaugh EM; Janesch EL; Morris AC
    Sci Rep; 2020 Jul; 10(1):11316. PubMed ID: 32647335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish.
    Prabhudesai SN; Cameron DA; Stenkamp DL
    Dev Biol; 2005 Nov; 287(1):157-67. PubMed ID: 16197938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes.
    Fu J; Nagashima M; Guo C; Raymond PA; Wei X
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):505-518. PubMed ID: 29368007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the asymmetric pineal complex in zebrafish requires two independently acting transcription factors.
    Snelson CD; Burkart JT; Gamse JT
    Dev Dyn; 2008 Dec; 237(12):3538-44. PubMed ID: 18629869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina.
    Morris AC; Scholz TL; Brockerhoff SE; Fadool JM
    Dev Neurobiol; 2008 Apr; 68(5):605-19. PubMed ID: 18265406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development.
    Wu SY; de Borsetti NH; Bain EJ; Bulow CR; Gamse JT
    Dev Biol; 2014 Jan; 385(1):13-22. PubMed ID: 24184636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of the distal retina of the adult zebrafish, Danio rerio.
    Tarboush R; Chapman GB; Connaughton VP
    Tissue Cell; 2012 Aug; 44(4):264-79. PubMed ID: 22608306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.