These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 1917991)
1. The retinylidene Schiff base counterion in bacteriorhodopsin. Marti T; Rösselet SJ; Otto H; Heyn MP; Khorana HG J Biol Chem; 1991 Oct; 266(28):18674-83. PubMed ID: 1917991 [TBL] [Abstract][Full Text] [Related]
2. Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn. Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG J Biol Chem; 1992 Aug; 267(24):16922-7. PubMed ID: 1512233 [TBL] [Abstract][Full Text] [Related]
3. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
4. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807 [TBL] [Abstract][Full Text] [Related]
5. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
6. A large photolysis-induced pKa increase of the chromophore counterion in bacteriorhodopsin: implications for ion transport mechanisms of retinal proteins. Braiman MS; Dioumaev AK; Lewis JR Biophys J; 1996 Feb; 70(2):939-47. PubMed ID: 8789111 [TBL] [Abstract][Full Text] [Related]
7. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Subramaniam S; Marti T; Khorana HG Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1013-7. PubMed ID: 1967832 [TBL] [Abstract][Full Text] [Related]
8. Resonance Raman spectra of bacteriorhodopsin mutants with substitutions at Asp-85, Asp-96, and Arg-82. Lin SW; Fodor SP; Miercke LJ; Shand RF; Betlach MC; Stroud RM; Mathies RA Photochem Photobiol; 1991 Mar; 53(3):341-6. PubMed ID: 2062880 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. Rath P; Marti T; Sonar S; Khorana HG; Rothschild KJ J Biol Chem; 1993 Aug; 268(24):17742-9. PubMed ID: 8349659 [TBL] [Abstract][Full Text] [Related]
10. Hydration of the counterion of the Schiff base in the chloride-transporting mutant of bacteriorhodopsin: FTIR and FT-raman studies of the effects of anion binding when Asp85 is replaced with a neutral residue. Chon YS; Sasaki J; Kandori H; Brown LS; Lanyi JK; Needleman R; Maeda A Biochemistry; 1996 Nov; 35(45):14244-50. PubMed ID: 8916909 [TBL] [Abstract][Full Text] [Related]
11. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398 [TBL] [Abstract][Full Text] [Related]
12. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374 [TBL] [Abstract][Full Text] [Related]
14. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa. Sakmar TP; Franke RR; Khorana HG Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228 [TBL] [Abstract][Full Text] [Related]
15. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin. Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036 [TBL] [Abstract][Full Text] [Related]
16. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
17. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-->Asn and Asp212-->Asn: effects of pH and anions. Moltke S; Krebs MP; Mollaaghababa R; Khorana HG; Heyn MP Biophys J; 1995 Nov; 69(5):2074-83. PubMed ID: 8580351 [TBL] [Abstract][Full Text] [Related]
18. Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base. Subramaniam S; Greenhalgh DA; Khorana HG J Biol Chem; 1992 Dec; 267(36):25730-3. PubMed ID: 1464589 [TBL] [Abstract][Full Text] [Related]
19. Role of a helix B lysine residue in the photoactive site in channelrhodopsins. Li H; Govorunova EG; Sineshchekov OA; Spudich JL Biophys J; 2014 Apr; 106(8):1607-17. PubMed ID: 24739160 [TBL] [Abstract][Full Text] [Related]
20. Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study. Kelemen L; Galajda P; Száraz S; Ormos P Biophys J; 1999 Apr; 76(4):1951-8. PubMed ID: 10096893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]