These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 19180179)
1. Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. Bradley PH; Brauer MJ; Rabinowitz JD; Troyanskaya OG PLoS Comput Biol; 2009 Jan; 5(1):e1000270. PubMed ID: 19180179 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Metabolomics of Saccharomyces Cerevisiae Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Mohammad K; Jiang H; Titorenko VI J Vis Exp; 2021 Jan; (167):. PubMed ID: 33491678 [TBL] [Abstract][Full Text] [Related]
3. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism. Matsuda F; Kinoshita S; Nishino S; Tomita A; Shimizu H PLoS One; 2017; 12(2):e0172742. PubMed ID: 28241048 [TBL] [Abstract][Full Text] [Related]
4. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. Zhu J; Sova P; Xu Q; Dombek KM; Xu EY; Vu H; Tu Z; Brem RB; Bumgarner RE; Schadt EE PLoS Biol; 2012; 10(4):e1001301. PubMed ID: 22509135 [TBL] [Abstract][Full Text] [Related]
5. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Kumar K; Venkatraman V; Bruheim P Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414 [TBL] [Abstract][Full Text] [Related]
6. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
7. A functional genomics approach using metabolomics and in silico pathway analysis. Förster J; Gombert AK; Nielsen J Biotechnol Bioeng; 2002 Sep; 79(7):703-12. PubMed ID: 12209793 [TBL] [Abstract][Full Text] [Related]
8. Functionally Related Genes Cluster into Genomic Regions That Coordinate Transcription at a Distance in Saccharomyces cerevisiae. Cera A; Holganza MK; Hardan AA; Gamarra I; Eldabagh RS; Deschaine M; Elkamhawy S; Sisso EM; Foley JJ; Arnone JT mSphere; 2019 Mar; 4(2):. PubMed ID: 30867326 [TBL] [Abstract][Full Text] [Related]
9. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. Daran-Lapujade P; Jansen ML; Daran JM; van Gulik W; de Winde JH; Pronk JT J Biol Chem; 2004 Mar; 279(10):9125-38. PubMed ID: 14630934 [TBL] [Abstract][Full Text] [Related]
10. Genetic basis of metabolome variation in yeast. Breunig JS; Hackett SR; Rabinowitz JD; Kruglyak L PLoS Genet; 2014 Mar; 10(3):e1004142. PubMed ID: 24603560 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584 [TBL] [Abstract][Full Text] [Related]
13. Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. Rossouw D; Naes T; Bauer FF BMC Genomics; 2008 Nov; 9():530. PubMed ID: 18990252 [TBL] [Abstract][Full Text] [Related]
15. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. Moschen S; Higgins J; Di Rienzo JA; Heinz RA; Paniego N; Fernandez P BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):174. PubMed ID: 27295368 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Kim S; Kim J; Song JH; Jung YH; Choi IS; Choi W; Park YC; Seo JH; Kim KH Biotechnol J; 2016 Sep; 11(9):1221-9. PubMed ID: 27313052 [TBL] [Abstract][Full Text] [Related]
18. Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Usaite R; Patil KR; Grotkjaer T; Nielsen J; Regenberg B Appl Environ Microbiol; 2006 Sep; 72(9):6194-203. PubMed ID: 16957246 [TBL] [Abstract][Full Text] [Related]
19. A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Petti AA; Church GM Genome Res; 2005 Sep; 15(9):1298-306. PubMed ID: 16109970 [TBL] [Abstract][Full Text] [Related]