These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19180179)

  • 21. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of intracellular metabolites concentrations in Escherichia coli under nutrition stress using liquid chromatography-tandem mass spectrometry.
    Ji F; Shen Y; Tang L; Cai Z
    Talanta; 2018 Nov; 189():1-7. PubMed ID: 30086891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The top genes: on the distance from transcript to function in yeast glycolysis.
    Fraenkel DG
    Curr Opin Microbiol; 2003 Apr; 6(2):198-201. PubMed ID: 12732312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of lipid-related extracellular metabolites in Saccharomyces cerevisiae.
    Sun T; Wetzel SJ; Johnson ME; Surlow BA; Patton-Vogt J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 897():1-9. PubMed ID: 22541168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.
    Fazio A; Jewett MC; Daran-Lapujade P; Mustacchi R; Usaite R; Pronk JT; Workman CT; Nielsen J
    BMC Genomics; 2008 Jul; 9():341. PubMed ID: 18638364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.
    Medintz IL; Vora GJ; Rahbar AM; Thach DC
    Mol Biosyst; 2007 Sep; 3(9):623-34. PubMed ID: 17700863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological network mapping and source signal deduction.
    Brynildsen MP; Wu TY; Jang SS; Liao JC
    Bioinformatics; 2007 Jul; 23(14):1783-91. PubMed ID: 17495996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions.
    Casu F; Pinu FR; Stefanello E; Greenwood DR; Villas-Bôas SG
    Metabolomics; 2018 Jul; 14(8):103. PubMed ID: 30830379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics.
    Shen X; Wang R; Xiong X; Yin Y; Cai Y; Ma Z; Liu N; Zhu ZJ
    Nat Commun; 2019 Apr; 10(1):1516. PubMed ID: 30944337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in
    Tesnière C; Pradal M; Bessière C; Sanchez I; Blondin B; Bigey F
    Mol Biol Cell; 2018 Feb; 29(4):490-498. PubMed ID: 29282283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From measurements of metabolites to metabolomics: an 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions.
    Stitt M; Fernie AR
    Curr Opin Biotechnol; 2003 Apr; 14(2):136-44. PubMed ID: 12732314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic analysis of regulatory network dynamics reveals large topological changes.
    Luscombe NM; Babu MM; Yu H; Snyder M; Teichmann SA; Gerstein M
    Nature; 2004 Sep; 431(7006):308-12. PubMed ID: 15372033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Metabolomics Describes the Yeast Biosynthetic Regulome.
    Mülleder M; Calvani E; Alam MT; Wang RK; Eckerstorfer F; Zelezniak A; Ralser M
    Cell; 2016 Oct; 167(2):553-565.e12. PubMed ID: 27693354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis.
    Bruck J; Liebermeister W; Klipp E
    Genome Inform; 2008; 20():1-14. PubMed ID: 19425118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.
    Francki MG; Hayton S; Gummer JP; Rawlinson C; Trengove RD
    Plant Biotechnol J; 2016 Feb; 14(2):649-60. PubMed ID: 26032167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae.
    Zhu J; Jambhekar A; Sarver A; DeRisi J
    PLoS One; 2006 Dec; 1(1):e94. PubMed ID: 17183726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in
    Chomvong K; Benjamin DI; Nomura DK; Cate JHD
    mBio; 2017 Aug; 8(4):. PubMed ID: 28790206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic pathway relationships revealed by an integrative analysis of the transcriptional and metabolic temperature stress-response dynamics in yeast.
    Walther D; Strassburg K; Durek P; Kopka J
    OMICS; 2010 Jun; 14(3):261-74. PubMed ID: 20455750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.