These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program. Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799 [TBL] [Abstract][Full Text] [Related]
24. Hip-abductor fatigue and single-leg landing mechanics in women athletes. Patrek MF; Kernozek TW; Willson JD; Wright GA; Doberstein ST J Athl Train; 2011; 46(1):31-42. PubMed ID: 21214348 [TBL] [Abstract][Full Text] [Related]
25. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. Morgan KD; Donnelly CJ; Reinbolt JA J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505 [TBL] [Abstract][Full Text] [Related]
26. Quadriceps and hamstrings fatigue alters hip and knee mechanics. Thomas AC; McLean SG; Palmieri-Smith RM J Appl Biomech; 2010 May; 26(2):159-70. PubMed ID: 20498487 [TBL] [Abstract][Full Text] [Related]
27. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury. Ameer MA; Muaidi QI Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348 [TBL] [Abstract][Full Text] [Related]
28. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: implications for risk of non-contact ACL injury. Ali N; Robertson DG; Rouhi G Knee; 2014 Jan; 21(1):38-46. PubMed ID: 23274067 [TBL] [Abstract][Full Text] [Related]
30. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study. Smeets A; Malfait B; Dingenen B; Robinson MA; Vanrenterghem J; Peers K; Nijs S; Vereecken S; Staes F; Verschueren S Knee; 2019 Jan; 26(1):40-51. PubMed ID: 30415973 [TBL] [Abstract][Full Text] [Related]
31. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
32. Effects of changes in skiing posture on the kinetics of the knee joint. Koyanagi M; Shino K; Yoshimoto Y; Inoue S; Sato M; Nakata K Knee Surg Sports Traumatol Arthrosc; 2006 Jan; 14(1):88-93. PubMed ID: 15909205 [TBL] [Abstract][Full Text] [Related]
33. Gait and neuromuscular asymmetries after acute anterior cruciate ligament rupture. Gardinier ES; Manal K; Buchanan TS; Snyder-Mackler L Med Sci Sports Exerc; 2012 Aug; 44(8):1490-6. PubMed ID: 22330021 [TBL] [Abstract][Full Text] [Related]
34. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury. Haddas R; Hooper T; James CR; Sizer PS J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298 [TBL] [Abstract][Full Text] [Related]
35. Timing of Muscle Activation Is Altered During Single-Leg Landing Tasks After Anterior Cruciate Ligament Reconstruction at the Time of Return to Sport. Rocchi JE; Labanca L; Laudani L; Minganti C; Mariani PP; Macaluso A Clin J Sport Med; 2020 Nov; 30(6):e186-e193. PubMed ID: 30418218 [TBL] [Abstract][Full Text] [Related]
36. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Stearns KM; Powers CM Am J Sports Med; 2014 Mar; 42(3):602-9. PubMed ID: 24464929 [TBL] [Abstract][Full Text] [Related]