BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 1918024)

  • 1. Unusual reactivity of a flavin in a bifurcating electron-transferring flavoprotein leads to flavin modification and a charge-transfer complex.
    Mohamed-Raseek N; van Galen C; Stanley R; Miller AF
    J Biol Chem; 2022 Dec; 298(12):102606. PubMed ID: 36257407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein.
    Sharma P; Maklashina E; Cecchini G; Iverson TM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23548-23556. PubMed ID: 32887801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics.
    Moosavi B; Berry EA; Zhu XL; Yang WC; Yang GF
    Cell Mol Life Sci; 2019 Oct; 76(20):4023-4042. PubMed ID: 31236625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor.
    Huijbers MM; Martínez-Júlvez M; Westphal AH; Delgado-Arciniega E; Medina M; van Berkel WJ
    Sci Rep; 2017 Mar; 7():43880. PubMed ID: 28256579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress on the characterization of aldonolactone oxidoreductases.
    Aboobucker SI; Lorence A
    Plant Physiol Biochem; 2016 Jan; 98():171-85. PubMed ID: 26696130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II.
    Maklashina E; Rajagukguk S; Starbird CA; McDonald WH; Koganitsky A; Eisenbach M; Iverson TM; Cecchini G
    J Biol Chem; 2016 Feb; 291(6):2904-16. PubMed ID: 26644464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase.
    Cheng VW; Piragasam RS; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    Biochemistry; 2015 Feb; 54(4):1043-52. PubMed ID: 25569225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic and structural role of a conserved active site histidine in berberine bridge enzyme.
    Wallner S; Winkler A; Riedl S; Dully C; Horvath S; Gruber K; Macheroux P
    Biochemistry; 2012 Aug; 51(31):6139-47. PubMed ID: 22757961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A; Bruckner RC; Zhao G; Jorns MS
    Biochemistry; 2005 May; 44(17):6452-62. PubMed ID: 15850379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN.
    Yorita K; Matsuoka T; Misaki H; Massey V
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine.
    Mewies M; Packman LC; Mathews FS; Scrutton NS
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):267-72. PubMed ID: 8694773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative FAD-binding domain in a distinct group of oxidases including a protein involved in plant development.
    Mushegian AR; Koonin EV
    Protein Sci; 1995 Jun; 4(6):1243-4. PubMed ID: 7549889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoflavinylation of apo6-hydroxy-D-nicotine oxidase.
    Brandsch R; Bichler V
    J Biol Chem; 1991 Oct; 266(28):19056-62. PubMed ID: 1918024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D-nicotine oxidase.
    Brandsch R; Bichler V; Schmidt M; Buchner J
    J Biol Chem; 1992 Oct; 267(29):20844-9. PubMed ID: 1356985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria.
    Stoltz M; Rassow J; Bückmann AF; Brandsch R
    J Biol Chem; 1996 Oct; 271(41):25208-12. PubMed ID: 8810280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity.
    Mauch L; Bichler V; Brandsch R
    FEBS Lett; 1989 Oct; 257(1):86-8. PubMed ID: 2680607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction.
    Edmondson DE; Newton-Vinson P
    Antioxid Redox Signal; 2001 Oct; 3(5):789-806. PubMed ID: 11761328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How and why are some riboflavin coenzymes covalently attached to proteins?
    Decker K
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():40-5. PubMed ID: 1297774
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.