These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 1918048)
1. Clostridium botulinum C3 ADP-ribosyltransferase gene. Cloning, sequencing, and expression of a functional protein in Escherichia coli. Nemoto Y; Namba T; Kozaki S; Narumiya S J Biol Chem; 1991 Oct; 266(29):19312-9. PubMed ID: 1918048 [TBL] [Abstract][Full Text] [Related]
2. Two different types of ADP-ribosyltransferase C3 from Clostridium botulinum type D lysogenized organisms. Moriishi K; Syuto B; Saito M; Oguma K; Fujii N; Abe N; Naiki M Infect Immun; 1993 Dec; 61(12):5309-14. PubMed ID: 8225604 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum types C and D. Hauser D; Gibert M; Eklund MW; Boquet P; Popoff MR J Bacteriol; 1993 Nov; 175(22):7260-8. PubMed ID: 8226673 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Popoff MR; Hauser D; Boquet P; Eklund MW; Gill DM Infect Immun; 1991 Oct; 59(10):3673-9. PubMed ID: 1910014 [TBL] [Abstract][Full Text] [Related]
5. DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Popoff M; Boquet P; Gill DM; Eklund MW Nucleic Acids Res; 1990 Mar; 18(5):1291. PubMed ID: 2108433 [No Abstract] [Full Text] [Related]
6. NAD+ binding site of Clostridium botulinum C3 ADP-ribosyltransferase. Identification of peptide in the adenine ring binding domain using 2-azido NAD. Chavan AJ; Nemoto Y; Narumiya S; Kozaki S; Haley BE J Biol Chem; 1992 Jul; 267(21):14866-70. PubMed ID: 1634527 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
8. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174. Böhmer J; Jung M; Sehr P; Fritz G; Popoff M; Just I; Aktories K Biochemistry; 1996 Jan; 35(1):282-9. PubMed ID: 8555186 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. Just I; Mohr C; Schallehn G; Menard L; Didsbury JR; Vandekerckhove J; van Damme J; Aktories K J Biol Chem; 1992 May; 267(15):10274-80. PubMed ID: 1587816 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of ADP-ribosyltransferases (exoenzyme C3) of Clostridium botulinum type C and D strains. Moriishi K; Syuto B; Yokosawa N; Oguma K; Saito M J Bacteriol; 1991 Oct; 173(19):6025-9. PubMed ID: 1917836 [TBL] [Abstract][Full Text] [Related]
11. Immunochemical identification of the ADP-ribosyltransferase in botulinum C1 neurotoxin as C3 exoenzyme-like molecule. Morii N; Ohashi Y; Nemoto Y; Fujiwara M; Ohnishi Y; Nishiki T; Kamata Y; Kozaki S; Narumiya S; Sakaguchi G J Biochem; 1990 May; 107(5):769-75. PubMed ID: 2118901 [TBL] [Abstract][Full Text] [Related]
12. ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions. Narumiya S; Morii N; Sekine A; Kozaki S J Physiol (Paris); 1990; 84(4):267-72. PubMed ID: 2127805 [TBL] [Abstract][Full Text] [Related]
13. Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q. Rohrbeck A; Kolbe T; Hagemann S; Genth H; Just I FEBS J; 2012 Aug; 279(15):2657-71. PubMed ID: 22621765 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of p21 Rho in intact cells by C3 diphtheria toxin chimera proteins. Boquet P; Popoff MR; Giry M; Lemichez E; Bergez-Aullo P Methods Enzymol; 1995; 256():297-306. PubMed ID: 7476444 [No Abstract] [Full Text] [Related]
15. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Aktories K; Braun U; Rösener S; Just I; Hall A Biochem Biophys Res Commun; 1989 Jan; 158(1):209-13. PubMed ID: 2492192 [TBL] [Abstract][Full Text] [Related]
16. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. Vogelsgesang M; Aktories K Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778 [TBL] [Abstract][Full Text] [Related]
17. Immuno-crossreactivity between botulinum neurotoxin type C1 or D and exoenzyme C3. Toratani S; Yokosawa N; Yokosawa H; Ishii S; Oguma K FEBS Lett; 1989 Jul; 252(1-2):83-7. PubMed ID: 2474453 [TBL] [Abstract][Full Text] [Related]
18. Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme. Saito Y; Nemoto Y; Ishizaki T; Watanabe N; Morii N; Narumiya S FEBS Lett; 1995 Sep; 371(2):105-9. PubMed ID: 7672106 [TBL] [Abstract][Full Text] [Related]
19. Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. Cho H; Cronan JE J Biol Chem; 1993 May; 268(13):9238-45. PubMed ID: 8098033 [TBL] [Abstract][Full Text] [Related]
20. Guanine nucleotide-dependent ADP-ribosylation of soluble rho catalyzed by Clostridium botulinum C3 ADP-ribosyltransferase. Isolation and characterization of a newly recognized form of rhoA. Williamson KC; Smith LA; Moss J; Vaughan M J Biol Chem; 1990 Dec; 265(34):20807-12. PubMed ID: 2174426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]