BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19180523)

  • 1. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics.
    Nakamura S; Kobayashi T; Nakamura M; Itoh S; Yamashita K
    J Biomed Mater Res A; 2010 Jan; 92(1):267-75. PubMed ID: 19180523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics].
    Zhu M; Zeng Y; Sun T; Peng Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):174-7. PubMed ID: 15828468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization.
    Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K
    Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula.
    Cheng L; Ye F; Yang R; Lu X; Shi Y; Li L; Fan H; Bu H
    Acta Biomater; 2010 Apr; 6(4):1569-74. PubMed ID: 19896564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental study on bone formation induced by porous HA-beta-TCP bioceramics].
    Zhang C
    Zhonghua Wai Ke Za Zhi; 1993 Dec; 31(12):722-5. PubMed ID: 8033701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced bone bonding of the hydroxyapatite/beta-tricalcium phosphate composite by electrical polarization in rabbit long bone.
    Sagawa H; Itoh S; Wang W; Yamashita K
    Artif Organs; 2010 Jun; 34(6):491-7. PubMed ID: 20456322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization.
    Itoh S; Nakamura S; Nakamura M; Shinomiya K; Yamashita K
    Biomaterials; 2006 Nov; 27(32):5572-9. PubMed ID: 16876861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate.
    Matsushima A; Kotobuki N; Tadokoro M; Kawate K; Yajima H; Takakura Y; Ohgushi H
    Artif Organs; 2009 Jun; 33(6):474-81. PubMed ID: 19473144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate.
    Tazaki J; Murata M; Akazawa T; Yamamoto M; Ito K; Arisue M; Shibata T; Tabata Y
    Biomed Mater Eng; 2009; 19(2-3):141-6. PubMed ID: 19581707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical osteobonding evaluation of electrically polarized hydroxyapatite ceramics.
    Nakamura S; Kobayashi T; Yamashita K
    J Biomed Mater Res A; 2004 Jan; 68(1):90-4. PubMed ID: 14661253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants.
    Porter AE; Buckland T; Hing K; Best SM; Bonfield W
    J Biomed Mater Res A; 2006 Jul; 78(1):25-33. PubMed ID: 16596583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
    Itoh S; Nakamura S; Kobayashi T; Shinomiya K; Yamashita K; Itoh S
    Calcif Tissue Int; 2006 Mar; 78(3):133-42. PubMed ID: 16525747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects.
    Chatterjea A; van der Stok J; Danoux CB; Yuan H; Habibovic P; van Blitterswijk CA; Weinans H; de Boer J
    J Biomed Mater Res A; 2014 May; 102(5):1399-407. PubMed ID: 23733500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.