These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19180556)

  • 1. Blind identification of evoked human brain activity with independent component analysis of optical data.
    Markham J; White BR; Zeff BW; Culver JP
    Hum Brain Mapp; 2009 Aug; 30(8):2382-92. PubMed ID: 19180556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New paradigm for optical imaging: temporally encoded maps of intrinsic signal.
    Kalatsky VA; Stryker MP
    Neuron; 2003 May; 38(4):529-45. PubMed ID: 12765606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.
    Nir Y; Hasson U; Levy I; Yeshurun Y; Malach R
    Neuroimage; 2006 May; 30(4):1313-24. PubMed ID: 16413791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a standard analysis for functional near-infrared imaging.
    Schroeter ML; Bücheler MM; Müller K; Uludağ K; Obrig H; Lohmann G; Tittgemeyer M; Villringer A; von Cramon DY
    Neuroimage; 2004 Jan; 21(1):283-90. PubMed ID: 14741666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex.
    Toronov VY; Zhang X; Webb AG
    Neuroimage; 2007 Feb; 34(3):1136-48. PubMed ID: 17134913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cortical areas underlying the perception of optic flow: brain imaging studies.
    Greenlee MW
    Int Rev Neurobiol; 2000; 44():269-92. PubMed ID: 10605650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.
    Lahnakoski JM; Salmi J; Jääskeläinen IP; Lampinen J; Glerean E; Tikka P; Sams M
    PLoS One; 2012; 7(4):e35215. PubMed ID: 22496909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping brain function during naturalistic viewing using high-density diffuse optical tomography.
    Fishell AK; Burns-Yocum TM; Bergonzi KM; Eggebrecht AT; Culver JP
    Sci Rep; 2019 Jul; 9(1):11115. PubMed ID: 31366956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis.
    Ramkumar P; Parkkonen L; Hari R; Hyvärinen A
    Hum Brain Mapp; 2012 Jul; 33(7):1648-62. PubMed ID: 21915941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study.
    Gratton G; Goodman-Wood MR; Fabiani M
    Hum Brain Mapp; 2001 May; 13(1):13-25. PubMed ID: 11284043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography.
    Zeff BW; White BR; Dehghani H; Schlaggar BL; Culver JP
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12169-74. PubMed ID: 17616584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation.
    Meyer M; Baumann S; Marchina S; Jancke L
    BMC Neurosci; 2007 Feb; 8():14. PubMed ID: 17284307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal phase-scrambling increases visual cortex activity.
    Fraedrich EM; Glasauer S; Flanagin VL
    Neuroreport; 2010 Jun; 21(8):596-600. PubMed ID: 20431494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-trial variability in event-related BOLD signals.
    Duann JR; Jung TP; Kuo WJ; Yeh TC; Makeig S; Hsieh JC; Sejnowski TJ
    Neuroimage; 2002 Apr; 15(4):823-35. PubMed ID: 11906223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of receptive field size from higher harmonics in visuotopic mapping using continuous stimulation optical imaging.
    Vanni MP; Provost J; Lesage F; Casanova C
    J Neurosci Methods; 2010 May; 189(1):138-50. PubMed ID: 20346978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory processing during viewing of cinematographic material: computational modeling and functional neuroimaging.
    Bordier C; Puja F; Macaluso E
    Neuroimage; 2013 Feb; 67():213-26. PubMed ID: 23202431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perception of self-motion from peripheral optokinetic stimulation suppresses visual evoked responses to central stimuli.
    Thilo KV; Kleinschmidt A; Gresty MA
    J Neurophysiol; 2003 Aug; 90(2):723-30. PubMed ID: 12904491
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.