BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19180614)

  • 21. Analysis of von Hippel-Lindau hereditary cancer syndrome: implications of oxygen sensing.
    Yang H; Ivan M; Min JH; Kim WY; Kaelin WG
    Methods Enzymol; 2004; 381():320-35. PubMed ID: 15063684
    [No Abstract]   [Full Text] [Related]  

  • 22. Determination and modulation of prolyl-4-hydroxylase domain oxygen sensor activity.
    Wirthner R; Balamurugan K; Stiehl DP; Barth S; Spielmann P; Oehme F; Flamme I; Katschinski DM; Wenger RH; Camenisch G
    Methods Enzymol; 2007; 435():43-60. PubMed ID: 17998048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing.
    Mole DR; Maxwell PH; Pugh CW; Ratcliffe PJ
    IUBMB Life; 2001 Jul; 52(1-2):43-7. PubMed ID: 11795592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iTRAQ proteomic identification of pVHL-dependent and -independent targets of Egln1 prolyl hydroxylase knockdown in renal carcinoma cells.
    Haffey WD; Mikhaylova O; Meller J; Yi Y; Greis KD; Czyzyk-Krzeska MF
    Adv Enzyme Regul; 2009; 49(1):121-32. PubMed ID: 19159641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia-inducible factors in the first trimester human lung.
    Groenman F; Rutter M; Caniggia I; Tibboel D; Post M
    J Histochem Cytochem; 2007 Apr; 55(4):355-63. PubMed ID: 17189520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OS-9: another piece in the HIF complex story.
    Flashman E; McDonough MA; Schofield CJ
    Mol Cell; 2005 Feb; 17(4):472-3. PubMed ID: 15721249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL.
    Xie L; Xiao K; Whalen EJ; Forrester MT; Freeman RS; Fong G; Gygi SP; Lefkowitz RJ; Stamler JS
    Sci Signal; 2009 Jul; 2(78):ra33. PubMed ID: 19584355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress.
    Mikhaylova O; Ignacak ML; Barankiewicz TJ; Harbaugh SV; Yi Y; Maxwell PH; Schneider M; Van Geyte K; Carmeliet P; Revelo MP; Wyder M; Greis KD; Meller J; Czyzyk-Krzeska MF
    Mol Cell Biol; 2008 Apr; 28(8):2701-17. PubMed ID: 18285459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery.
    Alcaide-German ML; Vara-Vega A; Garcia-Fernandez LF; Landazuri MO; del Peso L
    BMC Cell Biol; 2008 Apr; 9():18. PubMed ID: 18402654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo.
    Minamishima YA; Moslehi J; Padera RF; Bronson RT; Liao R; Kaelin WG
    Mol Cell Biol; 2009 Nov; 29(21):5729-41. PubMed ID: 19720742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species.
    Callapina M; Zhou J; Schmid T; Köhl R; Brüne B
    Free Radic Biol Med; 2005 Oct; 39(7):925-36. PubMed ID: 16140212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIF prolyl 4-hydroxylases and their potential as drug targets.
    Myllyharju J
    Curr Pharm Des; 2009; 15(33):3878-85. PubMed ID: 19671043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion.
    Pagé EL; Chan DA; Giaccia AJ; Levine M; Richard DE
    Mol Biol Cell; 2008 Jan; 19(1):86-94. PubMed ID: 17942596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis.
    Semenza GL
    Blood; 2009 Sep; 114(10):2015-9. PubMed ID: 19494350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro.
    Pan Y; Mansfield KD; Bertozzi CC; Rudenko V; Chan DA; Giaccia AJ; Simon MC
    Mol Cell Biol; 2007 Feb; 27(3):912-25. PubMed ID: 17101781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.
    Aprelikova O; Chandramouli GV; Wood M; Vasselli JR; Riss J; Maranchie JK; Linehan WM; Barrett JC
    J Cell Biochem; 2004 Jun; 92(3):491-501. PubMed ID: 15156561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PHDs overactivation during chronic hypoxia "desensitizes" HIFalpha and protects cells from necrosis.
    Ginouvès A; Ilc K; Macías N; Pouysségur J; Berra E
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4745-50. PubMed ID: 18347341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster.
    Arquier N; Vigne P; Duplan E; Hsu T; Therond PP; Frelin C; D'Angelo G
    Biochem J; 2006 Jan; 393(Pt 2):471-80. PubMed ID: 16176182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation--implications for prolyl hydroxylase activity and iron.
    Callapina M; Zhou J; Schnitzer S; Metzen E; Lohr C; Deitmer JW; Brüne B
    Exp Cell Res; 2005 May; 306(1):274-84. PubMed ID: 15878351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The HIF pathway and erythrocytosis.
    Lee FS; Percy MJ
    Annu Rev Pathol; 2011; 6():165-92. PubMed ID: 20939709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.