BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19180622)

  • 1. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives.
    Lan A; Li K; Wu H; Olson DH; Emge TJ; Ki W; Hong M; Li J
    Angew Chem Int Ed Engl; 2009; 48(13):2334-8. PubMed ID: 19180622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic study of fluorescence-based detection of nitroexplosives and other aromatics in the vapor phase by microporous metal-organic frameworks.
    Pramanik S; Hu Z; Zhang X; Zheng C; Kelly S; Li J
    Chemistry; 2013 Nov; 19(47):15964-71. PubMed ID: 24123511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2,4-Dinitrotoluene Sensing.
    Roales J; Moscoso FG; Gámez F; Lopes-Costa T; Sousaraei A; Casado S; Castro-Smirnov JR; Cabanillas-Gonzalez J; Almeida J; Queirós C; Cunha-Silva L; Silva AMG; Pedrosa JM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28841183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds.
    Pramanik S; Zheng C; Zhang X; Emge TJ; Li J
    J Am Chem Soc; 2011 Mar; 133(12):4153-5. PubMed ID: 21384862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPM3: a multifunctional microporous MOF with recyclable framework and high H2 binding energy.
    Lan A; Li K; Wu H; Kong L; Nijem N; Olson DH; Emge TJ; Chabal YJ; Langreth DC; Hong M; Li J
    Inorg Chem; 2009 Aug; 48(15):7165-73. PubMed ID: 19722690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.
    Gole B; Bar AK; Mukherjee PS
    Chem Commun (Camb); 2011 Nov; 47(44):12137-9. PubMed ID: 21993497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives.
    Lee JH; Jaworski J; Jung JH
    Nanoscale; 2013 Sep; 5(18):8533-40. PubMed ID: 23892560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of time, temperature, and kinetics on the hysteretic adsorption-desorption of H2, Ar, and N2 in the metal-organic framework Zn2(bpdc)2(bpee).
    Sircar S; Wu H; Li J; Lueking AD
    Langmuir; 2011 Dec; 27(23):14169-79. PubMed ID: 21973224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of oriented silver-functionalized RPM3 films for the selective detection of olefins.
    Marti AM; Perera SD; McBeath LD; Balkus KJ
    Langmuir; 2013 May; 29(19):5927-36. PubMed ID: 23594169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives.
    Li R; Yuan YP; Qiu LG; Zhang W; Zhu JF
    Small; 2012 Jan; 8(2):225-30. PubMed ID: 22114057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microporous luminescent europium metal-organic framework for nitro explosive sensing.
    Zhou X; Li H; Xiao H; Li L; Zhao Q; Yang T; Zuo J; Huang W
    Dalton Trans; 2013 Apr; 42(16):5718-23. PubMed ID: 23446909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives.
    Xu H; Liu F; Cui Y; Chen B; Qian G
    Chem Commun (Camb); 2011 Mar; 47(11):3153-5. PubMed ID: 21271003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks.
    Sousaraei A; Queirós C; Moscoso FG; Lopes-Costa T; Pedrosa JM; Silva AMG; Cunha-Silva L; Cabanillas-Gonzalez J
    Anal Chem; 2019 Dec; 91(24):15853-15859. PubMed ID: 31701735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array.
    Germain ME; Knapp MJ
    J Am Chem Soc; 2008 Apr; 130(16):5422-3. PubMed ID: 18376839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges.
    Senesac LR; Yi D; Greve A; Hales JH; Davis ZJ; Nicholson DM; Boisen A; Thundat T
    Rev Sci Instrum; 2009 Mar; 80(3):035102. PubMed ID: 19334947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB).
    Thomas SW; Amara JP; Bjork RE; Swager TM
    Chem Commun (Camb); 2005 Sep; (36):4572-4. PubMed ID: 16158118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material.
    He N; Gao M; Shen D; Li H; Han Z; Zhao P
    Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A luminescent microporous metal-organic framework with highly selective CO₂ adsorption and sensing of nitro explosives.
    Gong YN; Huang YL; Jiang L; Lu TB
    Inorg Chem; 2014 Sep; 53(18):9457-9. PubMed ID: 25170531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework.
    Zhang SR; Du DY; Qin JS; Bao SJ; Li SL; He WW; Lan YQ; Shen P; Su ZM
    Chemistry; 2014 Mar; 20(13):3589-94. PubMed ID: 24577888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.