BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1918085)

  • 41. Molecular cloning and identification of bottle-nosed dolphin p40(phox), p47(phox) and p67(phox).
    Inoue Y; Itou T; Jimbo T; Sakai T; Ueda K; Imajoh-Ohmi S
    Vet Immunol Immunopathol; 2001 Jan; 78(1):21-33. PubMed ID: 11182145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds.
    Diatchuk V; Lotan O; Koshkin V; Wikstroem P; Pick E
    J Biol Chem; 1997 May; 272(20):13292-301. PubMed ID: 9148950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of the respiratory burst oxidase subunit p67(phox) during human neutrophil activation. Regulation by protein kinase C-dependent and independent pathways.
    Benna JE; Dang PM; Gaudry M; Fay M; Morel F; Hakim J; Gougerot-Pocidalo MA
    J Biol Chem; 1997 Jul; 272(27):17204-8. PubMed ID: 9202043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase.
    Nisimoto Y; Freeman JL; Motalebi SA; Hirshberg M; Lambeth JD
    J Biol Chem; 1997 Jul; 272(30):18834-41. PubMed ID: 9228059
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the mechanism of inhibition of the neutrophil respiratory burst oxidase by a peptide from the C-terminus of the large subunit of cytochrome b558.
    Uhlinger DJ; Tyagi SR; Lambeth JD
    Biochemistry; 1995 Jan; 34(2):524-7. PubMed ID: 7819245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of neutrophil NADPH oxidase proteins gp91-phox, p22-phox, p67-phox, and p47-phox in mammalian species.
    Hitt ND; Kleinberg ME
    Am J Vet Res; 1996 May; 57(5):672-6. PubMed ID: 8723880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox).
    Han CH; Freeman JL; Lee T; Motalebi SA; Lambeth JD
    J Biol Chem; 1998 Jul; 273(27):16663-8. PubMed ID: 9642219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neutrophils from patients after burn injury express a deficiency of the oxidase components p47-phox and p67-phox.
    Rosenthal J; Thurman GW; Cusack N; Peterson VM; Malech HL; Ambruso DR
    Blood; 1996 Dec; 88(11):4321-9. PubMed ID: 8943869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Properties of phagocyte NADPH oxidase p47-phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid.
    Peng G; Huang J; Boyd M; Kleinberg ME
    Biochem J; 2003 Jul; 373(Pt 1):221-9. PubMed ID: 12650641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids.
    Berdichevsky Y; Mizrahi A; Ugolev Y; Molshanski-Mor S; Pick E
    J Biol Chem; 2007 Jul; 282(30):22122-39. PubMed ID: 17548354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small angle neutron scattering and gel filtration analyses of neutrophil NADPH oxidase cytosolic factors highlight the role of the C-terminal end of p47phox in the association with p40phox.
    Grizot S; Grandvaux N; Fieschi F; Fauré J; Massenet C; Andrieu JP; Fuchs A; Vignais PV; Timmins PA; Dagher MC; Pebay-Peyroula E
    Biochemistry; 2001 Mar; 40(10):3127-33. PubMed ID: 11258927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of myeloid cell cytosols functionally and immunochemically deficient in the 47 kDa or 67 kDa NADPH oxidase cytosolic factors.
    Levy R; Malech HL; Rotrosen D
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1114-20. PubMed ID: 2167670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein delivery by Pseudomonas type III secretion system: Ex vivo complementation of p67(phox)-deficient chronic granulomatous disease.
    Polack B; Vergnaud S; Paclet MH; Lamotte D; Toussaint B; Morel F
    Biochem Biophys Res Commun; 2000 Sep; 275(3):854-8. PubMed ID: 10973811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C-terminal region of the cytosolic subunit p47(phox) is a primary target of conformational change during the activation of leukocyte NADPH oxidase.
    Lee JH; Lee KS; Chung T; Park J
    Biochimie; 2000 Aug; 82(8):727-32. PubMed ID: 11018289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly.
    Gorzalczany Y; Sigal N; Itan M; Lotan O; Pick E
    J Biol Chem; 2000 Dec; 275(51):40073-81. PubMed ID: 11007780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and enhances superoxide anion production by a cell-free system of NADPH oxidase activity.
    Leavey PJ; Gonzalez-Aller C; Thurman G; Kleinberg M; Rinckel L; Ambruso DW; Freeman S; Kuypers FA; Ambruso DR
    J Biol Chem; 2002 Nov; 277(47):45181-7. PubMed ID: 12121978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy.
    Bizouarn T; Karimi G; Masoud R; Souabni H; Machillot P; Serfaty X; Wien F; Réfrégiers M; Houée-Levin C; Baciou L
    FEBS J; 2016 Aug; 283(15):2896-910. PubMed ID: 27284000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells.
    Jones OT
    Bioessays; 1994 Dec; 16(12):919-23. PubMed ID: 7840772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits.
    Masoud R; Serfaty X; Erard M; Machillot P; Karimi G; Hudik E; Wien F; Baciou L; Houée-Levin C; Bizouarn T
    Free Radic Biol Med; 2017 Dec; 113():470-477. PubMed ID: 29079525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells.
    Chowdhury AK; Watkins T; Parinandi NL; Saatian B; Kleinberg ME; Usatyuk PV; Natarajan V
    J Biol Chem; 2005 May; 280(21):20700-11. PubMed ID: 15774483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.