BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19181118)

  • 1. Xeroderma pigmentosum: its overlap with trichothiodystrophy, Cockayne syndrome and other progeroid syndromes.
    Lambert WC; Gagna CE; Lambert MW
    Adv Exp Med Biol; 2008; 637():128-37. PubMed ID: 19181118
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA damage, aging, and cancer.
    Hoeijmakers JH
    N Engl J Med; 2009 Oct; 361(15):1475-85. PubMed ID: 19812404
    [No Abstract]   [Full Text] [Related]  

  • 3. [Advance in research on causative genes of xeroderma pigmentosum and related diseases].
    Sun Z; Guo Y; Zhang J; Zhuang Y; Li M; Yao Z
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):708-12. PubMed ID: 27577229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: do the genes explain the diseases?
    Chu G; Mayne L
    Trends Genet; 1996 May; 12(5):187-92. PubMed ID: 8984734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity.
    Cleaver JE; Lam ET; Revet I
    Nat Rev Genet; 2009 Nov; 10(11):756-68. PubMed ID: 19809470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide excision repair and its connection with cancer and ageing.
    Andressoo JO; Hoeijmakers JH; de Waard H
    Adv Exp Med Biol; 2005; 570():45-83. PubMed ID: 18727498
    [No Abstract]   [Full Text] [Related]  

  • 7. Metronidazole-Induced Hepatitis in a Teenager With Xeroderma Pigmentosum and Trichothiodystrophy Overlap.
    Abiona A; Cordeiro N; Fawcett H; Tamura D; Khan SG; DiGiovanna JJ; Lehmann AR; Fassihi H
    Pediatrics; 2021 Oct; 148(4):. PubMed ID: 34593652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progeroid syndromes and UV-induced oxidative DNA damage.
    Kamenisch Y; Berneburg M
    J Investig Dermatol Symp Proc; 2009 Aug; 14(1):8-14. PubMed ID: 19675546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility.
    Nouspikel T
    Cell Mol Life Sci; 2009 Mar; 66(6):994-1009. PubMed ID: 19153657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy.
    Norris PG; Limb GA; Hamblin AS; Lehmann AR; Arlett CF; Cole J; Waugh AP; Hawk JL
    J Invest Dermatol; 1990 Jan; 94(1):94-100. PubMed ID: 2295840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer.
    Kraemer KH; Levy DD; Parris CN; Gozukara EM; Moriwaki S; Adelberg S; Seidman MM
    J Invest Dermatol; 1994 Nov; 103(5 Suppl):96S-101S. PubMed ID: 7963692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair and cancer: speculations based on studies with xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.
    Lehmann AR; Norris PG
    Carcinogenesis; 1989 Aug; 10(8):1353-6. PubMed ID: 2752510
    [No Abstract]   [Full Text] [Related]  

  • 13. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition.
    Yew YW; Giordano CN; Spivak G; Lim HW
    J Am Acad Dermatol; 2016 Nov; 75(5):873-882. PubMed ID: 27745642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and molecular genetic analyses of nine newly identified XPD-deficient patients reveal a novel mutation resulting in TTD as well as in XP/CS complex phenotypes.
    Schäfer A; Gratchev A; Seebode C; Hofmann L; Schubert S; Laspe P; Apel A; Ohlenbusch A; Tzvetkov M; Weishaupt C; Oji V; Schön MP; Emmert S
    Exp Dermatol; 2013 Jul; 22(7):486-9. PubMed ID: 23800062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair.
    Bukowska B; Karwowski BT
    Life Sci; 2018 Feb; 195():6-18. PubMed ID: 29305302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative and energy metabolism as potential clues for clinical heterogeneity in nucleotide excision repair disorders.
    Hosseini M; Ezzedine K; Taieb A; Rezvani HR
    J Invest Dermatol; 2015 Feb; 135(2):341-351. PubMed ID: 25296907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
    Cleaver JE; Thompson LH; Richardson AS; States JC
    Hum Mutat; 1999; 14(1):9-22. PubMed ID: 10447254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Xeroderma pigmentosum and related syndromes].
    Berneburg M; Krutmann J
    Hautarzt; 2003 Jan; 54(1):33-40. PubMed ID: 12567255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The versatile DNA nucleotide excision repair (NER) and its medical significance.
    Falik-Zaccai TC; Keren Z; Slor H
    Pediatr Endocrinol Rev; 2009 Dec; 7(2):37-42. PubMed ID: 20118892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-specific accelerated aging in nucleotide excision repair deficiency.
    Niedernhofer LJ
    Mech Ageing Dev; 2008; 129(7-8):408-15. PubMed ID: 18538374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.