BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19181556)

  • 1. Molecular interaction of imino sugars with human alpha-galactosidase: Insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease.
    Sugawara K; Tajima Y; Kawashima I; Tsukimura T; Saito S; Ohno K; Iwamoto K; Kobayashi T; Itoh K; Sakuraba H
    Mol Genet Metab; 2009 Apr; 96(4):233-8. PubMed ID: 19181556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid alpha-glucosidase (alglucosidase alfa): insight into the complex formation mechanism.
    Yoshimizu M; Tajima Y; Matsuzawa F; Aikawa S; Iwamoto K; Kobayashi T; Edmunds T; Fujishima K; Tsuji D; Itoh K; Ikekita M; Kawashima I; Sugawara K; Ohyanagi N; Suzuki T; Togawa T; Ohno K; Sakuraba H
    Clin Chim Acta; 2008 May; 391(1-2):68-73. PubMed ID: 18328816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism for stabilization of a mutant α-galactosidase A involving M51I amino acid substitution by imino sugars.
    Tsukimura T; Chiba Y; Ohno K; Saito S; Tajima Y; Sakuraba H
    Mol Genet Metab; 2011 May; 103(1):26-32. PubMed ID: 21353612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and structural study on a S529V mutant acid α-glucosidase responsive to pharmacological chaperones.
    Tajima Y; Saito S; Ohno K; Tsukimura T; Tsujino S; Sakuraba H
    J Hum Genet; 2011 Jun; 56(6):440-6. PubMed ID: 21471980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants.
    Yam GH; Bosshard N; Zuber C; Steinmann B; Roth J
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C1076-82. PubMed ID: 16531566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines.
    Benjamin ER; Flanagan JJ; Schilling A; Chang HH; Agarwal L; Katz E; Wu X; Pine C; Wustman B; Desnick RJ; Lockhart DJ; Valenzano KJ
    J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin.
    Ishii S; Chang HH; Kawasaki K; Yasuda K; Wu HL; Garman SC; Fan JQ
    Biochem J; 2007 Sep; 406(2):285-95. PubMed ID: 17555407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM1 gangliosidosis.
    Aguilar-Moncayo M; Takai T; Higaki K; Mena-Barragán T; Hirano Y; Yura K; Li L; Yu Y; Ninomiya H; García-Moreno MI; Ishii S; Sakakibara Y; Ohno K; Nanba E; Ortiz Mellet C; García Fernández JM; Suzuki Y
    Chem Commun (Camb); 2012 Jul; 48(52):6514-6. PubMed ID: 22618082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and modeling approaches to understand the impact of the Fabry's disease causing mutation (D92Y) on the interaction with pharmacological chaperone 1-deoxygalactonojirimycin (DGJ).
    Thirumal Kumar D; Judith E; Priyadharshini Christy J; Siva R; Tayubi IA; Chakraborty C; George Priya Doss C; Zayed H
    Adv Protein Chem Struct Biol; 2019; 114():341-407. PubMed ID: 30635085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies.
    Germain DP; Fan JQ
    Int J Clin Pharmacol Ther; 2009; 47 Suppl 1():S111-7. PubMed ID: 20040321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants.
    Yu Y; Mena-Barragán T; Higaki K; Johnson JL; Drury JE; Lieberman RL; Nakasone N; Ninomiya H; Tsukimura T; Sakuraba H; Suzuki Y; Nanba E; Mellet CO; García Fernández JM; Ohno K
    ACS Chem Biol; 2014 Jul; 9(7):1460-9. PubMed ID: 24783948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic mouse expressing human mutant alpha-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease.
    Ishii S; Yoshioka H; Mannen K; Kulkarni AB; Fan JQ
    Biochim Biophys Acta; 2004 Nov; 1690(3):250-7. PubMed ID: 15511632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a chemical chaperone on genetic mutations in alpha-galactosidase A in Korean patients with Fabry disease.
    Park JY; Kim GH; Kim SS; Ko JM; Lee JJ; Yoo HW
    Exp Mol Med; 2009 Jan; 41(1):1-7. PubMed ID: 19287194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of pharmacological chaperoning in human α-galactosidase.
    Guce AI; Clark NE; Rogich JJ; Garman SC
    Chem Biol; 2011 Dec; 18(12):1521-6. PubMed ID: 22195554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease.
    Ishii S; Chang HH; Yoshioka H; Shimada T; Mannen K; Higuchi Y; Taguchi A; Fan JQ
    J Pharmacol Exp Ther; 2009 Mar; 328(3):723-31. PubMed ID: 19106170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease.
    Porto C; Pisani A; Rosa M; Acampora E; Avolio V; Tuzzi MR; Visciano B; Gagliardo C; Materazzi S; la Marca G; Andria G; Parenti G
    J Inherit Metab Dis; 2012 May; 35(3):513-20. PubMed ID: 22187137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants.
    Siekierska A; De Baets G; Reumers J; Gallardo R; Rudyak S; Broersen K; Couceiro J; Van Durme J; Schymkowitz J; Rousseau F
    J Biol Chem; 2012 Aug; 287(34):28386-97. PubMed ID: 22773828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,5-Dideoxy-2,5-imino-d-altritol as a new class of pharmacological chaperone for Fabry disease.
    Kato A; Yamashita Y; Nakagawa S; Koike Y; Adachi I; Hollinshead J; Nash RJ; Ikeda K; Asano N
    Bioorg Med Chem; 2010 Jun; 18(11):3790-4. PubMed ID: 20457528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis.
    Takai T; Higaki K; Aguilar-Moncayo M; Mena-Barragán T; Hirano Y; Yura K; Yu L; Ninomiya H; García-Moreno MI; Sakakibara Y; Ohno K; Nanba E; Ortiz Mellet C; García Fernández JM; Suzuki Y
    Mol Ther; 2013 Mar; 21(3):526-32. PubMed ID: 23337983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of multimeric pyrrolidine iminosugar inhibitors of human β-glucocerebrosidase and α-galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease.
    Martínez-Bailén M; Carmona AT; Cardona F; Matassini C; Goti A; Kubo M; Kato A; Robina I; Moreno-Vargas AJ
    Eur J Med Chem; 2020 Apr; 192():112173. PubMed ID: 32146376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.