These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1918160)

  • 21. Isoforms of tau protein from mammalian brain and avian erythrocytes: structure, self-assembly, and elasticity.
    Lichtenberg-Kraag B; Mandelkow EM
    J Struct Biol; 1990; 105(1-3):46-53. PubMed ID: 2129217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs.
    Lechtreck KF; Rostmann J; Grunow A
    J Cell Sci; 2002 Apr; 115(Pt 7):1511-22. PubMed ID: 11896198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes.
    de Pennart H; Verlhac MH; Cibert C; Santa Maria A; Maro B
    Dev Biol; 1993 May; 157(1):170-81. PubMed ID: 8387033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of SF-assemblin.
    Bremerich A; Lechtreck KF; Melkonian M
    Methods Cell Biol; 1995; 47():315-21. PubMed ID: 7476506
    [No Abstract]   [Full Text] [Related]  

  • 25. Purification and characterization of a basal body-associated Ca2+-binding protein.
    Huang B; Watterson DM; Lee VD; Schibler MJ
    J Cell Biol; 1988 Jul; 107(1):121-31. PubMed ID: 3292538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 210 kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies.
    Lechtreck KF; Teltenkötter A; Grunow A
    J Cell Sci; 1999 Jun; 112 ( Pt 11)():1633-44. PubMed ID: 10318757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a direct role of nascent basal bodies during spindle pole initiation in the green alga Spermatozopsis similis.
    Lechtreck KF; Grunow A
    Protist; 1999 Aug; 150(2):163-81. PubMed ID: 10505416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells.
    Rickard JE; Kreis TE
    J Cell Biol; 1990 May; 110(5):1623-33. PubMed ID: 1970824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules.
    Renninger S; Backendorf E; Kreimer G
    Planta; 2001 May; 213(1):51-63. PubMed ID: 11523656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolated cytoskeletons of human blood platelets: dark-field imaging of coiled and uncoiled microtubules.
    Kowit JD; Linck RW; Kenney DM
    Biol Cell; 1988; 64(3):283-91. PubMed ID: 2906550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A crustacean neuronal cytoskeletal protein with characteristics of neurofilaments and microtubule-associated proteins.
    Weaver DJ; Viancour TA
    J Comp Neurol; 1992 Jun; 320(1):110-20. PubMed ID: 1401239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells.
    Bloom GS; Vallee RB
    J Cell Biol; 1983 Jun; 96(6):1523-31. PubMed ID: 6343400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification, and biochemical and structural characterization of a fimbrial haemagglutinin of Renibacterium salmoninarum.
    Dubreuil JD; Jacques M; Graham L; Lallier R
    J Gen Microbiol; 1990 Dec; 136(12):2443-8. PubMed ID: 1981894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review.
    Melkonian M
    Biosystems; 1980; 12(1-2):85-104. PubMed ID: 6991018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estramustine binds a MAP-1-like protein to inhibit microtubule assembly in vitro and disrupt microtubule organization in DU 145 cells.
    Stearns ME; Wang M; Tew KD; Binder LI
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2647-56. PubMed ID: 3060470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical characterization of tektins from sperm flagellar doublet microtubules.
    Linck RW; Stephens RE
    J Cell Biol; 1987 Apr; 104(4):1069-75. PubMed ID: 3558479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth.
    Black MM; Aletta JM; Greene LA
    J Cell Biol; 1986 Aug; 103(2):545-57. PubMed ID: 3733878
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural interaction of cytoskeletal components.
    Schliwa M; van Blerkom J
    J Cell Biol; 1981 Jul; 90(1):222-35. PubMed ID: 7019221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human epithelial cell intermediate filaments: isolation, purification, and characterization.
    Aynardi MW; Steinert PM; Goldman RD
    J Cell Biol; 1984 Apr; 98(4):1407-21. PubMed ID: 6538880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum.
    Bernstein M; Beech PL; Katz SG; Rosenbaum JL
    J Cell Biol; 1994 Jun; 125(6):1313-26. PubMed ID: 8207060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.