These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19181745)

  • 21. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soluble guanylyl cyclase (sGC) degradation and impairment of nitric oxide-mediated responses in urethra from obese mice: reversal by the sGC activator BAY 60-2770.
    Alexandre EC; Leiria LO; Silva FH; Mendes-Silvério CB; Calmasini FB; Davel AP; Mónica FZ; De Nucci G; Antunes E
    J Pharmacol Exp Ther; 2014 Apr; 349(1):2-9. PubMed ID: 24421320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries.
    Chen Z; Zhang X; Ying L; Dou D; Li Y; Bai Y; Liu J; Liu L; Feng H; Yu X; Leung SW; Vanhoutte PM; Gao Y
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H328-36. PubMed ID: 24906916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic guanosine monophosphate dependent pathway contributes to human mast cell inhibitory actions of the nitric oxide donor, diethylamine NONOate.
    Yip KH; Huang Y; Leung FP; Lau HY
    Eur J Pharmacol; 2010 Apr; 632(1-3):86-92. PubMed ID: 20096283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of chronic hypoxia on soluble guanylate cyclase activity in fetal and adult ovine cerebral arteries.
    Pearce WJ; Williams JM; White CR; Lincoln TM
    J Appl Physiol (1985); 2009 Jul; 107(1):192-9. PubMed ID: 19407253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species.
    Gerassimou C; Kotanidou A; Zhou Z; Simoes DC; Roussos C; Papapetropoulos A
    Br J Pharmacol; 2007 Apr; 150(8):1084-91. PubMed ID: 17339839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta.
    El-Awady MS; Smirnov SV; Watson ML
    Br J Pharmacol; 2008 Dec; 155(8):1164-73. PubMed ID: 18806822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Notch activation augments nitric oxide/soluble guanylyl cyclase signaling in immortalized ovarian surface epithelial cells and ovarian cancer cells.
    El-Sehemy A; Chang AC; Azad AK; Gupta N; Xu Z; Steed H; Karsan A; Fu Y
    Cell Signal; 2013 Dec; 25(12):2780-7. PubMed ID: 24041655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation.
    Feelisch M; Kotsonis P; Siebe J; Clement B; Schmidt HH
    Mol Pharmacol; 1999 Aug; 56(2):243-53. PubMed ID: 10419542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide.
    Ye L; Liu J; Liu H; Ying L; Dou D; Chen Z; Xu X; Raj JU; Gao Y
    Pflugers Arch; 2013 Feb; 465(2):333-41. PubMed ID: 23143201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired iNOS-sGC-cGMP signalling contributes to chronic hypoxic and hypercapnic pulmonary hypertension in rat.
    Xia XD; Xu ZJ; Hu XG; Wu CY; Dai YR; Yang L
    Cell Biochem Funct; 2012 Jun; 30(4):279-85. PubMed ID: 22290599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide and cGMP mediate alpha1D-adrenergic receptor-Stimulated protein secretion and p42/p44 MAPK activation in rat lacrimal gland.
    Hodges RR; Shatos MA; Tarko RS; Vrouvlianis J; Gu J; Dartt DA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2781-9. PubMed ID: 16043851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle.
    Toque HA; Mónica FZ; Morganti RP; De Nucci G; Antunes E
    Eur J Pharmacol; 2010 Oct; 645(1-3):158-64. PubMed ID: 20670622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide inhibits highly selective sodium channels and the Na+/K+-ATPase in H441 cells.
    Althaus M; Pichl A; Clauss WG; Seeger W; Fronius M; Morty RE
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):53-65. PubMed ID: 20139350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells.
    Braam B; de Roos R; Dijk A; Boer P; Post JA; Kemmeren PP; Holstege FC; Bluysen HA; Koomans HA
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H1977-86. PubMed ID: 15242832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of soluble guanylyl cyclase in living cells proceeds without loss of haem and involves heterodimer dissociation as a common step.
    Dai Y; Stuehr DJ
    Br J Pharmacol; 2022 Jun; 179(11):2505-2518. PubMed ID: 33975383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BAY58-2667 Activates Different Soluble Guanylyl Cyclase Species by Distinct Mechanisms that Indicate Its Principal Target in Cells is the Heme-Free Soluble Guanylyl Cyclase-Heat Shock Protein 90 Complex.
    Dai Y; Stuehr DJ
    Mol Pharmacol; 2023 May; 103(5):286-296. PubMed ID: 36868790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gastric motility in soluble guanylate cyclase alpha 1 knock-out mice.
    Vanneste G; Dhaese I; Sips P; Buys E; Brouckaert P; Lefebvre RA
    J Physiol; 2007 Nov; 584(Pt 3):907-20. PubMed ID: 17717014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity.
    Galle J; Zabel U; Hübner U; Hatzelmann A; Wagner B; Wanner C; Schmidt HH
    Br J Pharmacol; 1999 May; 127(1):195-203. PubMed ID: 10369473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP.
    Wykes V; Bellamy TC; Garthwaite J
    J Neurochem; 2002 Oct; 83(1):37-47. PubMed ID: 12358727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.