BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19181798)

  • 1. Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression.
    Donegan NP; Cheung AL
    J Bacteriol; 2009 Apr; 191(8):2795-805. PubMed ID: 19181798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis and organization of the sigmaB operon in Staphylococcus aureus.
    Senn MM; Giachino P; Homerova D; Steinhuber A; Strassner J; Kormanec J; Flückiger U; Berger-Bächi B; Bischoff M
    J Bacteriol; 2005 Dec; 187(23):8006-19. PubMed ID: 16291674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Staphylococcus aureus rsbW (orf159) gene encodes an anti-sigma factor of SigB.
    Miyazaki E; Chen JM; Ko C; Bishai WR
    J Bacteriol; 1999 May; 181(9):2846-51. PubMed ID: 10217777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress.
    Curtis TD; Takeuchi I; Gram L; Knudsen GM
    Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28098783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sigma(B) activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth.
    Palma M; Cheung AL
    Infect Immun; 2001 Dec; 69(12):7858-65. PubMed ID: 11705968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.
    Andrey DO; Jousselin A; Villanueva M; Renzoni A; Monod A; Barras C; Rodriguez N; Kelley WL
    PLoS One; 2015; 10(8):e0135579. PubMed ID: 26275216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
    Wise AA; Price CW
    J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of sigma B.
    Voelker U; Dufour A; Haldenwang WG
    J Bacteriol; 1995 Jan; 177(1):114-22. PubMed ID: 8002609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of mazEF-like antitoxin/toxin systems in bacteria.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 1999 Nov; 1(2):295-302. PubMed ID: 10943559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress.
    Pané-Farré J; Jonas B; Hardwick SW; Gronau K; Lewis RJ; Hecker M; Engelmann S
    J Bacteriol; 2009 Apr; 191(8):2561-73. PubMed ID: 19201800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus.
    Cheung AL; Chien YT; Bayer AS
    Infect Immun; 1999 Mar; 67(3):1331-7. PubMed ID: 10024579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of SaeRS and σ(B) on the expression of superantigens in different Staphylococcus aureus isolates.
    Kusch K; Hanke K; Holtfreter S; Schmudde M; Kohler C; Erck C; Wehland J; Hecker M; Ohlsen K; Bröker B; Engelmann S
    Int J Med Microbiol; 2011 Aug; 301(6):488-99. PubMed ID: 21470910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock.
    Benson AK; Haldenwang WG
    J Bacteriol; 1993 Apr; 175(7):1929-35. PubMed ID: 8458834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells - an in vivo proteomics perspective.
    Pförtner H; Burian MS; Michalik S; Depke M; Hildebrandt P; Dhople VM; Pané-Farré J; Hecker M; Schmidt F; Völker U
    Int J Med Microbiol; 2014 Mar; 304(2):177-87. PubMed ID: 24480029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation.
    Lauderdale KJ; Boles BR; Cheung AL; Horswill AR
    Infect Immun; 2009 Apr; 77(4):1623-35. PubMed ID: 19188357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection.
    Ma D; Mandell JB; Donegan NP; Cheung AL; Ma W; Rothenberger S; Shanks RMQ; Richardson AR; Urish KL
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772059
    [No Abstract]   [Full Text] [Related]  

  • 17. Revisiting the regulation of the capsular polysaccharide biosynthesis gene cluster in Staphylococcus aureus.
    Keinhörster D; Salzer A; Duque-Jaramillo A; George SE; Marincola G; Lee JC; Weidenmaier C; Wolz C
    Mol Microbiol; 2019 Oct; 112(4):1083-1099. PubMed ID: 31283061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus.
    Lei MG; Lee CY
    J Bacteriol; 2015 Dec; 197(23):3666-75. PubMed ID: 26350136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. σ
    Valle J; Echeverz M; Lasa I
    J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30858304
    [No Abstract]   [Full Text] [Related]  

  • 20. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections.
    Tuchscherr L; Bischoff M; Lattar SM; Noto Llana M; Pförtner H; Niemann S; Geraci J; Van de Vyver H; Fraunholz MJ; Cheung AL; Herrmann M; Völker U; Sordelli DO; Peters G; Löffler B
    PLoS Pathog; 2015 Apr; 11(4):e1004870. PubMed ID: 25923704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.