BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 19181933)

  • 1. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
    Garg V; Jiao J; Hu K
    Cardiovasc Res; 2009 Apr; 82(1):51-8. PubMed ID: 19181933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATP-sensitive potassium channels.
    Sampson LJ; Davies LM; Barrett-Jolley R; Standen NB; Dart C
    Cardiovasc Res; 2007 Oct; 76(1):61-70. PubMed ID: 17582389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes.
    Wu SN; Wu AZ; Sung RJ
    Life Sci; 2007 Jan; 80(4):378-87. PubMed ID: 17097686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane.
    Er F; Michels G; Gassanov N; Rivero F; Hoppe UC
    Circulation; 2004 Nov; 110(19):3100-7. PubMed ID: 15520315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for SUR2A in coupling cardiac K(ATP) channels to caveolin-3.
    Sun W; Hu K
    Cell Physiol Biochem; 2010; 25(4-5):409-18. PubMed ID: 20332621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of estrogen receptor alpha and caveolin-3 regulates connexin43 phosphorylation in metabolic inhibition-treated rat cardiomyocytes.
    Chung TH; Wang SM; Liang JY; Yang SH; Wu JC
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2323-33. PubMed ID: 19523531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntaxin-1A inhibition of P-1075, cromakalim, and diazoxide actions on mouse cardiac ATP-sensitive potassium channel.
    Ng B; Kang Y; Xie H; Sun H; Gaisano HY
    Cardiovasc Res; 2008 Dec; 80(3):365-74. PubMed ID: 18703534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels.
    Sampson LJ; Hayabuchi Y; Standen NB; Dart C
    Circ Res; 2004 Nov; 95(10):1012-8. PubMed ID: 15499025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide opens the KATP channel on rat atrial and ventricular myocytes.
    Zhong GZ; Li YB; Liu XL; Guo LS; Chen ML; Yang XC
    Cardiology; 2010; 115(2):120-6. PubMed ID: 19940474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra.
    Andoh T; Ishiwa D; Kamiya Y; Echigo N; Goto T; Yamada Y
    Brain Res; 2006 Dec; 1124(1):55-61. PubMed ID: 17084818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C-epsilon induces caveolin-dependent internalization of vascular adenosine 5'-triphosphate-sensitive K+ channels.
    Jiao J; Garg V; Yang B; Elton TS; Hu K
    Hypertension; 2008 Sep; 52(3):499-506. PubMed ID: 18663158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes.
    Abi-Char J; Maguy A; Coulombe A; Balse E; Ratajczak P; Samuel JL; Nattel S; Hatem SN
    J Physiol; 2007 Aug; 582(Pt 3):1205-17. PubMed ID: 17525113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolin-3 negatively regulates recombinant cardiac K(ATP) channels.
    Garg V; Sun W; Hu K
    Biochem Biophys Res Commun; 2009 Jul; 385(3):472-7. PubMed ID: 19481058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel functional role of heat shock protein 90 in ATP-sensitive K+ channel-mediated hypoxic preconditioning.
    Jiao JD; Garg V; Yang B; Hu K
    Cardiovasc Res; 2008 Jan; 77(1):126-33. PubMed ID: 18006464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells.
    Wu SN; Chang HD; Sung RJ
    Basic Clin Pharmacol Toxicol; 2006 May; 98(5):510-7. PubMed ID: 16635111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and function of ATP-dependent potassium channels in late post-infarction remodeling.
    Isidoro Tavares N; Philip-Couderc P; Papageorgiou I; Baertschi AJ; Lerch R; Montessuit C
    J Mol Cell Cardiol; 2007 Jun; 42(6):1016-25. PubMed ID: 17512536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production.
    Xie J; Duan L; Qian X; Huang X; Ding J; Hu G
    J Neurosci Res; 2010 Feb; 88(2):428-37. PubMed ID: 19746425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation.
    Balijepalli RC; Foell JD; Hall DD; Hell JW; Kamp TJ
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7500-5. PubMed ID: 16648270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kir6.2-deficient mice are susceptible to stimulated ANP secretion: K(ATP) channel acts as a negative feedback mechanism?
    Saegusa N; Sato T; Saito T; Tamagawa M; Komuro I; Nakaya H
    Cardiovasc Res; 2005 Jul; 67(1):60-8. PubMed ID: 15949470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.