These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 19181933)

  • 1. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes.
    Garg V; Jiao J; Hu K
    Cardiovasc Res; 2009 Apr; 82(1):51-8. PubMed ID: 19181933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATP-sensitive potassium channels.
    Sampson LJ; Davies LM; Barrett-Jolley R; Standen NB; Dart C
    Cardiovasc Res; 2007 Oct; 76(1):61-70. PubMed ID: 17582389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes.
    Wu SN; Wu AZ; Sung RJ
    Life Sci; 2007 Jan; 80(4):378-87. PubMed ID: 17097686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane.
    Er F; Michels G; Gassanov N; Rivero F; Hoppe UC
    Circulation; 2004 Nov; 110(19):3100-7. PubMed ID: 15520315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for SUR2A in coupling cardiac K(ATP) channels to caveolin-3.
    Sun W; Hu K
    Cell Physiol Biochem; 2010; 25(4-5):409-18. PubMed ID: 20332621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of estrogen receptor alpha and caveolin-3 regulates connexin43 phosphorylation in metabolic inhibition-treated rat cardiomyocytes.
    Chung TH; Wang SM; Liang JY; Yang SH; Wu JC
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2323-33. PubMed ID: 19523531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntaxin-1A inhibition of P-1075, cromakalim, and diazoxide actions on mouse cardiac ATP-sensitive potassium channel.
    Ng B; Kang Y; Xie H; Sun H; Gaisano HY
    Cardiovasc Res; 2008 Dec; 80(3):365-74. PubMed ID: 18703534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels.
    Sampson LJ; Hayabuchi Y; Standen NB; Dart C
    Circ Res; 2004 Nov; 95(10):1012-8. PubMed ID: 15499025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide opens the KATP channel on rat atrial and ventricular myocytes.
    Zhong GZ; Li YB; Liu XL; Guo LS; Chen ML; Yang XC
    Cardiology; 2010; 115(2):120-6. PubMed ID: 19940474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra.
    Andoh T; Ishiwa D; Kamiya Y; Echigo N; Goto T; Yamada Y
    Brain Res; 2006 Dec; 1124(1):55-61. PubMed ID: 17084818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C-epsilon induces caveolin-dependent internalization of vascular adenosine 5'-triphosphate-sensitive K+ channels.
    Jiao J; Garg V; Yang B; Elton TS; Hu K
    Hypertension; 2008 Sep; 52(3):499-506. PubMed ID: 18663158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes.
    Abi-Char J; Maguy A; Coulombe A; Balse E; Ratajczak P; Samuel JL; Nattel S; Hatem SN
    J Physiol; 2007 Aug; 582(Pt 3):1205-17. PubMed ID: 17525113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolin-3 negatively regulates recombinant cardiac K(ATP) channels.
    Garg V; Sun W; Hu K
    Biochem Biophys Res Commun; 2009 Jul; 385(3):472-7. PubMed ID: 19481058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel functional role of heat shock protein 90 in ATP-sensitive K+ channel-mediated hypoxic preconditioning.
    Jiao JD; Garg V; Yang B; Hu K
    Cardiovasc Res; 2008 Jan; 77(1):126-33. PubMed ID: 18006464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells.
    Wu SN; Chang HD; Sung RJ
    Basic Clin Pharmacol Toxicol; 2006 May; 98(5):510-7. PubMed ID: 16635111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and function of ATP-dependent potassium channels in late post-infarction remodeling.
    Isidoro Tavares N; Philip-Couderc P; Papageorgiou I; Baertschi AJ; Lerch R; Montessuit C
    J Mol Cell Cardiol; 2007 Jun; 42(6):1016-25. PubMed ID: 17512536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production.
    Xie J; Duan L; Qian X; Huang X; Ding J; Hu G
    J Neurosci Res; 2010 Feb; 88(2):428-37. PubMed ID: 19746425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation.
    Balijepalli RC; Foell JD; Hall DD; Hell JW; Kamp TJ
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7500-5. PubMed ID: 16648270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kir6.2-deficient mice are susceptible to stimulated ANP secretion: K(ATP) channel acts as a negative feedback mechanism?
    Saegusa N; Sato T; Saito T; Tamagawa M; Komuro I; Nakaya H
    Cardiovasc Res; 2005 Jul; 67(1):60-8. PubMed ID: 15949470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.