BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19182249)

  • 1. Clinical application of autofluorescence densitometry with a scanning laser ophthalmoscope.
    Sekiryu T; Iida T; Maruko I; Horiguchi M
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2994-3002. PubMed ID: 19182249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Pathophysiology of macular diseases--morphology and function].
    Iida T
    Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):238-74; discussion 275. PubMed ID: 21476310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundus autofluorescence related to retinal morphological and functional changes in idiopathic macular holes.
    Wakabayashi T; Ikuno Y; Sayanagi K; Soga K; Oshima Y; Tano Y
    Acta Ophthalmol; 2008 Dec; 86(8):897-901. PubMed ID: 18507731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the optical Stiles-Crawford effect and retinal densitometry in a clinical setting.
    DeLint PJ; Berendschot TT; van Norren D
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1519-23. PubMed ID: 9660503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope.
    von Rückmann A; Fitzke FW; Bird AC
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):478-86. PubMed ID: 9040481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fundus autofluorescence of age-related macular degeneration between a fundus camera and a confocal scanning laser ophthalmoscope.
    Yamamoto M; Kohno T; Shiraki K
    Osaka City Med J; 2009 Jun; 55(1):19-27. PubMed ID: 19725431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration.
    Schmitz-Valckenberg S; Bültmann S; Dreyhaupt J; Bindewald A; Holz FG; Rohrschneider K
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4470-6. PubMed ID: 15557456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundus autofluorescence imaging: review and perspectives.
    Schmitz-Valckenberg S; Holz FG; Bird AC; Spaide RF
    Retina; 2008 Mar; 28(3):385-409. PubMed ID: 18327131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundus autofluorescence and central serous chorioretinopathy.
    Spaide RF; Klancnik JM
    Ophthalmology; 2005 May; 112(5):825-33. PubMed ID: 15878062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence and infrared retinal imaging in patients and obligate carriers with neuronal ceroid lipofuscinosis.
    Kelly JP; Weiss AH; Rowell G; Seigel GM
    Ophthalmic Genet; 2009 Dec; 30(4):190-8. PubMed ID: 19852577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope.
    Garcia CR; Rivero ME; Bartsch DU; Ishiko S; Takamiya A; Fukui K; Hirokawa H; Clark T; Yoshida A; Freeman WR
    Ophthalmology; 1999 Jun; 106(6):1114-8. PubMed ID: 10366079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy.
    Ooto S; Hangai M; Takayama K; Arakawa N; Tsujikawa A; Koizumi H; Oshima S; Yoshimura N
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5541-50. PubMed ID: 21642620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central serous chorioretinopathy fundus autofluorescence comparison with two different confocal scanning laser ophthalmoscopes.
    Nam KT; Yun CM; Kim JT; Yang KS; Kim HJ; Kim SW; Oh J; Huh K
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2121-7. PubMed ID: 25690981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macular pigment shows ringlike structures.
    Berendschot TT; van Norren D
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):709-14. PubMed ID: 16431971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different fundus autofluorescence patterns of retinoschisis and macular hole retinal detachment in high myopia.
    Sayanagi K; Ikuno Y; Tano Y
    Am J Ophthalmol; 2007 Aug; 144(2):299-301. PubMed ID: 17659963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-wide-field green-light (532-nm) autofluorescence imaging in chronic Vogt-Koyanagi-Harada disease.
    Heussen FM; Vasconcelos-Santos DV; Pappuru RR; Walsh AC; Rao NA; Sadda SR
    Ophthalmic Surg Lasers Imaging; 2011; 42(4):272-7. PubMed ID: 21553702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-time-dependent increment in the luminescence of fundus autofluorescence.
    Ayata A; Tatlipinar S; Unal M; Ersanli D; Bilge AH
    Br J Ophthalmol; 2008 Sep; 92(9):1241-3. PubMed ID: 18617545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundus near infrared fluorescence correlates with fundus near infrared reflectance.
    Weinberger AW; Lappas A; Kirschkamp T; Mazinani BA; Huth JK; Mohammadi B; Walter P
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3098-108. PubMed ID: 16799056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autofluorescence method to measure macular pigment optical densities fluorometry and autofluorescence imaging.
    Delori FC
    Arch Biochem Biophys; 2004 Oct; 430(2):156-62. PubMed ID: 15369813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new instrument for the quantification of macular pigment density: first results in patients with AMD and healthy subjects.
    Wüstemeyer H; Jahn C; Nestler A; Barth T; Wolf S
    Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):666-71. PubMed ID: 12192461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.