BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19182249)

  • 21. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy.
    Bindewald A; Jorzik JJ; Loesch A; Schutt F; Holz FG
    Am J Ophthalmol; 2004 Mar; 137(3):556-8. PubMed ID: 15013882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography.
    Landa G; Garcia PM; Rosen RB
    Ophthalmologica; 2009; 223(3):155-61. PubMed ID: 19142030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia.
    Helb HM; Charbel Issa P; VAN DER Veen RL; Berendschot TT; Scholl HP; Holz FG
    Retina; 2008 Jun; 28(6):808-16. PubMed ID: 18536596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fundus autofluorescence examination using a confocal scanning laser ophthalmoscope HRA (Heidelberg Retina Angiograph)].
    Dolar-Szczasny J; Mackiewicz J; Bindewald A; Holz FG; Zagórski Z
    Klin Oczna; 2005; 107(7-9):544-7. PubMed ID: 16417019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scanning laser ophthalmoscope-evoked multifocal ERG (SLO-mfERG) in patients with macular holes and normal individuals.
    Rudolph G; Kalpadakis P; Bechmann M; Haritoglou C; Kampik A
    Eye (Lond); 2003 Oct; 17(7):801-8. PubMed ID: 14528241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated scanning laser ophthalmoscope image montages of retinal diseases.
    Rivero ME; Bartsch DU; Otto T; Freeman WR
    Ophthalmology; 1999 Dec; 106(12):2296-300. PubMed ID: 10599660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging vitreomacular interface abnormalities in the coronal plane by simultaneous combined scanning laser and optical coherence tomography.
    Tammewar AM; Bartsch DU; Kozak I; Rosen R; Falkenstein IA; Garcia P; Freeman WR
    Br J Ophthalmol; 2009 Mar; 93(3):366-72. PubMed ID: 19019945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-infrared and short-wavelength autofluorescence imaging in central serous chorioretinopathy.
    Ayata A; Tatlipinar S; Kar T; Unal M; Ersanli D; Bilge AH
    Br J Ophthalmol; 2009 Jan; 93(1):79-82. PubMed ID: 18829635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration.
    Holz FG; Bindewald-Wittich A; Fleckenstein M; Dreyhaupt J; Scholl HP; Schmitz-Valckenberg S;
    Am J Ophthalmol; 2007 Mar; 143(3):463-72. PubMed ID: 17239336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Kinetic fundus controlled perimetry with the scanning laser ophthalmoscope].
    Rohrschneider K; Becker M; Fendrich T; Völcker HE
    Klin Monbl Augenheilkd; 1995 Aug; 207(2):102-10. PubMed ID: 7474772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundus autofluorescence in choroidal metastatic lesions: a pilot study.
    Collet LC; Pulido JS; Gündüz K; Diago T; McCannel C; Blodi C; Link T
    Retina; 2008 Oct; 28(9):1251-6. PubMed ID: 19430391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.
    Zapata MA; Leila M; Teixidor T; Garcia-Arumi J
    Retina; 2015 Jun; 35(6):1202-10. PubMed ID: 25650707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD.
    Schmitz-Valckenberg S; Bindewald-Wittich A; Dolar-Szczasny J; Dreyhaupt J; Wolf S; Scholl HP; Holz FG;
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2648-54. PubMed ID: 16723482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative evaluation of retinal response to laser photocoagulation using dual-wavelength fundus autofluorescence imaging in a small animal model.
    Boretsky A; Motamedi M; Bell B; van Kuijk F
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6300-7. PubMed ID: 21715352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Issues in quantifying atrophic macular disease using retinal autofluorescence.
    Sunness JS; Ziegler MD; Applegate CA
    Retina; 2006; 26(6):666-72. PubMed ID: 16829810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential diagnosis of macular breaks by microperimetry using the scanning laser ophthalmoscope.
    Kakehashi A; Ishiko S; Konno S; Akiba J; Yoshida A
    Jpn J Ophthalmol; 1996; 40(1):116-22. PubMed ID: 8739509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fundus autofluorescence in patients with leber congenital amaurosis.
    Scholl HP; Chong NH; Robson AG; Holder GE; Moore AT; Bird AC
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2747-52. PubMed ID: 15277500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Topographic mapping of retinal function with a scanning laser ophthalmoscope and multifocal electroretinography using short M-sequences].
    Rudolph G; Bechmann M; Berninger T; Kutschbach E; Held U; Tornow RP; Kalpadakis P; Zol'nikova IV; Shamshinova AM
    Vestn Oftalmol; 2001; 117(2):32-5. PubMed ID: 11510163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine.
    Kellner U; Renner AB; Tillack H
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3531-8. PubMed ID: 16877425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photopigments in central serous chorioretinopathy.
    Ojima A; Iida T; Sekiryu T; Maruko I; Sugano Y
    Am J Ophthalmol; 2011 Jun; 151(6):940-952.e1. PubMed ID: 21457927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.