These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 19182531)
1. Pyk2 and Cyr61 at the cross-road of cAMP-dependent signalling in invasiveness and neuroendocrine differentiation of prostate cancer. Vitale G; Gentilini D; Abbruzzese A; Caraglia M Cancer Biol Ther; 2009 Feb; 8(3):243-4. PubMed ID: 19182531 [No Abstract] [Full Text] [Related]
2. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor. Merkle D; Hoffmann R Cell Signal; 2011 Mar; 23(3):507-15. PubMed ID: 20813184 [TBL] [Abstract][Full Text] [Related]
3. cAMP and Pyk2 interact to regulate prostate cell proliferation and function. Kisslinger A; Cantile M; Sparaneo G; Vitale N; Fabbrocini G; Chieffi P; Cillo C; Mancini FP; Tramontano D Cancer Biol Ther; 2009 Feb; 8(3):236-42. PubMed ID: 19106639 [TBL] [Abstract][Full Text] [Related]
4. PYK2 via S6K1 regulates the function of androgen receptors and the growth of prostate cancer cells. Hsiao YH; Huang YT; Hung CY; Kuo TC; Luo FJ; Yuan TC Endocr Relat Cancer; 2016 Aug; 23(8):651-63. PubMed ID: 27492635 [TBL] [Abstract][Full Text] [Related]
5. Cyr61 is regulated by cAMP-dependent protein kinase with serum levels correlating with prostate cancer aggressiveness. Terada N; Shiraishi T; Zeng Y; Mooney SM; Yeater DB; Mangold LA; Partin AW; Kulkarni P; Getzenberg RH Prostate; 2012 Jun; 72(9):966-76. PubMed ID: 22025384 [TBL] [Abstract][Full Text] [Related]
6. [Mechanism of invasion and metastasis of prostate cancer: over view]. Kanayama H Nihon Rinsho; 2016 May; 74 Suppl 3():129-34. PubMed ID: 27344716 [No Abstract] [Full Text] [Related]
7. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Sahu SN; Nunez S; Bai G; Gupta A Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2288-96. PubMed ID: 17329398 [TBL] [Abstract][Full Text] [Related]
8. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Uysal-Onganer P; Kawano Y; Caro M; Walker MM; Diez S; Darrington RS; Waxman J; Kypta RM Mol Cancer; 2010 Mar; 9():55. PubMed ID: 20219091 [TBL] [Abstract][Full Text] [Related]
9. Cyr61 is a potential prognostic marker for prostate cancer. Terada N; Kulkarni P; Getzenberg RH Asian J Androl; 2012 May; 14(3):405-8. PubMed ID: 22343491 [TBL] [Abstract][Full Text] [Related]
10. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. Behmoaram E; Bijian K; Jie S; Xu Y; Darnel A; Bismar TA; Alaoui-Jamali MA Am J Pathol; 2008 Nov; 173(5):1540-50. PubMed ID: 18832579 [TBL] [Abstract][Full Text] [Related]
11. Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells. Wiese H; Gelis L; Wiese S; Reichenbach C; Jovancevic N; Osterloh M; Meyer HE; Neuhaus EM; Hatt HH; Radziwill G; Warscheid B Biochim Biophys Acta; 2015 Jun; 1854(6):632-40. PubMed ID: 25219547 [TBL] [Abstract][Full Text] [Related]
12. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells. Labrecque MP; Takhar MK; Nason R; Santacruz S; Tam KJ; Massah S; Haegert A; Bell RH; Altamirano-Dimas M; Collins CC; Lee FJ; Prefontaine GG; Cox ME; Beischlag TV Oncotarget; 2016 Apr; 7(17):24284-302. PubMed ID: 27015368 [TBL] [Abstract][Full Text] [Related]
13. [Neuroendocrine differentiation in prostate cancer]. Wu CY; Na YQ; Yao JL; di Sant'Agnese PA; Huang JT Zhonghua Bing Li Xue Za Zhi; 2006 Sep; 35(9):565-7. PubMed ID: 17134555 [No Abstract] [Full Text] [Related]
14. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Zhao Y; Li W Asian J Androl; 2019; 21(3):253-259. PubMed ID: 29848834 [TBL] [Abstract][Full Text] [Related]
15. Role of Pyk2 in Human Cancers. Shen T; Guo Q Med Sci Monit; 2018 Nov; 24():8172-8182. PubMed ID: 30425234 [TBL] [Abstract][Full Text] [Related]
16. Identification of differentially expressed genes during cyclic adenosine monophosphate-induced neuroendocrine differentiation in the human prostatic adenocarcinoma cell line LNCaP. Goodin JL; Rutherford CL Mol Carcinog; 2002 Feb; 33(2):88-98. PubMed ID: 11813301 [TBL] [Abstract][Full Text] [Related]
17. Cyr61 downmodulation potentiates the anticancer effects of zoledronic acid in androgen-independent prostate cancer cells. Marra M; Santini D; Meo G; Vincenzi B; Zappavigna S; Baldi A; Rosolowski M; Tonini G; Loeffler M; Lupu R; Addeo SR; Abbruzzese A; Budillon A; Caraglia M Int J Cancer; 2009 Nov; 125(9):2004-13. PubMed ID: 19530242 [TBL] [Abstract][Full Text] [Related]
18. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Fernández-Martínez AB; Carmena MJ; Bajo AM; Vacas E; Sánchez-Chapado M; Prieto JC Cell Signal; 2015 Feb; 27(2):236-44. PubMed ID: 25446255 [TBL] [Abstract][Full Text] [Related]
19. Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Sun CK; Man K; Ng KT; Ho JW; Lim ZX; Cheng Q; Lo CM; Poon RT; Fan ST Carcinogenesis; 2008 Nov; 29(11):2096-105. PubMed ID: 18765415 [TBL] [Abstract][Full Text] [Related]
20. Divergent regulation of Pyk2/CAKbeta phosphorylation by Ca2+ and cAMP in the hippocampus. Alier KA; Morris BJ Biochim Biophys Acta; 2005 Sep; 1745(3):342-9. PubMed ID: 16120467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]