These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19182867)

  • 1. Development of a simple low noise amplifier for recording of sensory mass signals from peripheral nerves.
    Stieglitz T; Klausmann D; Krueger TB
    Biomed Tech (Berl); 2009 Feb; 54(1):1-7. PubMed ID: 19182867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-noise preamplifier for nerve cuff electrodes.
    Sahin M
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Very low-noise ENG amplifier system using CMOS technology.
    Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated CMOS amplifier for ENG signal recording.
    Uranga A; Navarro X; Barniol N
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2188-94. PubMed ID: 15605867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive neutralization of myoelectric interference from neural recording tripoles.
    Pachnis I; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1067-74. PubMed ID: 17554825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pseudodifferential amplifier for bioelectric events with DC-offset compensation using two-wired amplifying electrodes.
    Degen T; Jäckel H
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):300-10. PubMed ID: 16485759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On cuff imbalance and tripolar ENG amplifier configurations.
    Triantis IF; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):314-20. PubMed ID: 15709669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode.
    Zariffa J; Nagai MK; Daskalakis ZJ; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):420-7. PubMed ID: 19497824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-converted 1/f PM and AM noise in linear HBT amplifiers.
    Ferre-Pikal ES; Savage FH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1698-704. PubMed ID: 18986914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode.
    Yoo PB; Durand DM
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1461-9. PubMed ID: 16119242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes.
    Lawrence SM; Dhillon GS; Jensen W; Yoshida K; Horch KW
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):345-8. PubMed ID: 15473197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve.
    Boretius T; Badia J; Pascual-Font A; Schuettler M; Navarro X; Yoshida K; Stieglitz T
    Biosens Bioelectron; 2010 Sep; 26(1):62-9. PubMed ID: 20627510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Anatomical Detail and Tissue Conductivity Variations in Simulations of Multi-Contact Nerve Cuff Recordings.
    Garai P; Koh RGL; Schuettler M; Stieglitz T; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1653-1662. PubMed ID: 27898383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of interference source proximity on cuff imbalance.
    Triantis IF; Demosthenous A
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):354-7. PubMed ID: 16485768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection circuits for ultrasound applications.
    Camacho J; Fritsch C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1160-4. PubMed ID: 18519225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.