These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19183601)

  • 1. Technique for the focal-length measurement of positive lenses using Fizeau interferometry.
    Kumar YP; Chatterjee S
    Appl Opt; 2009 Feb; 48(4):730-6. PubMed ID: 19183601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital holographic testing of biconvex lenses.
    Chhaniwal VK; Kihiko JM; Dubey S; Shearon G; Javidi B; Anand A
    Appl Opt; 2013 Dec; 52(36):8714-22. PubMed ID: 24513936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focal length measurement based on the wavefront difference method by a Fizeau interferometer.
    Yang Z; Gao Z; Dou J; Wang X
    Appl Opt; 2014 Sep; 53(25):5598-605. PubMed ID: 25321352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interferometric focal length measurement of positive and negative lenses using a lateral-shearing cyclic path optical configuration setup and polarization phase-shifting interferometry.
    Kumar YP; Negi SS; Kamath MP; Chatterjee S; Sharma SD; Joshi AS
    Appl Opt; 2017 Oct; 56(30):8414-8419. PubMed ID: 29091620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave.
    Anand A; Chhaniwal VK
    Appl Opt; 2007 Apr; 46(11):2022-6. PubMed ID: 17384716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute interferometry for fast and precise radius measurement.
    Kredba J; Psota P; Stašík M; Lédl V; Veselý L; Nečásek J
    Opt Express; 2021 Apr; 29(8):12531-12542. PubMed ID: 33985010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of refractive indices of biconvex lenses by use of a Michelson interferometer.
    Chhaniwal VK; Anand A; Narayanamurthy CS
    Appl Opt; 2006 Jun; 45(17):3985-90. PubMed ID: 16761036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-group stabilized zoom lens design of two focal-length-variable elements.
    Hao Q; Cheng X; Du K
    Opt Express; 2013 Mar; 21(6):7758-67. PubMed ID: 23546157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust motion-free and error-correcting method of estimating the focal length of a lens.
    Reza SA; Anjum A
    Appl Opt; 2017 Jan; 56(2):342-353. PubMed ID: 28085873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approach for designing thick cemented doublet lenses based on the caustic surface.
    López-Bautista MC; Avendaño-Alejo M; Castillo-Santiago G; Castañeda L; Román-Hernández E
    Appl Opt; 2022 Jan; 61(3):A10-A21. PubMed ID: 35200761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of low-derivative surface lenses by two-laser holography with Bi12TiO20 crystals.
    Barbosa EA; de Sousa CB; Maffei WM
    Appl Opt; 2009 Sep; 48(27):5114-20. PubMed ID: 19767927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid liquid-membrane lenses made by one fixed and one or two active optical components.
    Mikš A; Pokorný P
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jan; 38(1):99-107. PubMed ID: 33362157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraxial focal length measurement method with a simple apparatus.
    Lu Z; Cai L
    Opt Express; 2019 Feb; 27(3):2044-2055. PubMed ID: 30732249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lenses for Electron Microscopy and Microanalysis: Shadowgraph Method of Determining Focal Properties and Aberration Coefficients.
    Rempfer GF; Fyfield MS; Griffith OH
    Microsc Microanal; 1998 Jan; 4(1):34-49. PubMed ID: 9524144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser reflection differential confocal large-radius measurement for concave surfaces.
    Xiao Y; Qiu L; Zhao W
    Appl Opt; 2018 Aug; 57(23):6693-6698. PubMed ID: 30129614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the interferometric radius measurement using Gaussian beam propagation.
    Medicus KM; Snyder JJ; Davies A
    Appl Opt; 2006 Dec; 45(34):8621-8. PubMed ID: 17119557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal length calibration of an electrically tunable lens by digital holography.
    Wang Z; Qu W; Yang F; Asundi AK
    Appl Opt; 2016 Feb; 55(4):749-56. PubMed ID: 26836076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Effect of Lens Position and Corneal Curvature on the Near Focal Point of Multifocal Intraocular Lenses.
    McKee HD; Jhanji V
    J Refract Surg; 2016 Jan; 32(1):64-6. PubMed ID: 26812717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser differential confocal ultra-long focal length measurement.
    Zhao W; Sun R; Qiu L; Sha D
    Opt Express; 2009 Oct; 17(22):20051-62. PubMed ID: 19997229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.