These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 19183899)
1. Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation. Singh ND; Ding Y; Daniell H Methods Mol Biol; 2009; 483():163-92. PubMed ID: 19183899 [TBL] [Abstract][Full Text] [Related]
2. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Daniell H Biotechnol J; 2006 Oct; 1(10):1071-9. PubMed ID: 17004305 [TBL] [Abstract][Full Text] [Related]
3. A protocol for expression of foreign genes in chloroplasts. Verma D; Samson NP; Koya V; Daniell H Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956 [TBL] [Abstract][Full Text] [Related]
5. Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens. Kumar S; Daniell H Methods Mol Biol; 2004; 267():365-83. PubMed ID: 15269437 [TBL] [Abstract][Full Text] [Related]
6. Chloroplast-derived vaccine antigens and other therapeutic proteins. Daniell H; Chebolu S; Kumar S; Singleton M; Falconer R Vaccine; 2005 Mar; 23(15):1779-83. PubMed ID: 15734040 [TBL] [Abstract][Full Text] [Related]
7. New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Tregoning J; Maliga P; Dougan G; Nixon PJ Phytochemistry; 2004 Apr; 65(8):989-94. PubMed ID: 15110679 [TBL] [Abstract][Full Text] [Related]
8. Chloroplast-derived anthrax and other vaccine antigens: their immunogenic and immunoprotective properties. Kamarajugadda S; Daniell H Expert Rev Vaccines; 2006 Dec; 5(6):839-49. PubMed ID: 17184221 [TBL] [Abstract][Full Text] [Related]
9. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Lössl AG; Waheed MT Plant Biotechnol J; 2011 Jun; 9(5):527-39. PubMed ID: 21447052 [TBL] [Abstract][Full Text] [Related]
11. Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Chebolu S; Daniell H Curr Top Microbiol Immunol; 2009; 332():33-54. PubMed ID: 19401820 [TBL] [Abstract][Full Text] [Related]
12. Plant-made oral vaccines against human infectious diseases-Are we there yet? Chan HT; Daniell H Plant Biotechnol J; 2015 Oct; 13(8):1056-70. PubMed ID: 26387509 [TBL] [Abstract][Full Text] [Related]
13. Strategies for improving vaccine antigens expression in transgenic plants: fusion to carrier sequences. Escribano JM; Perez-Filgueira DM Methods Mol Biol; 2009; 483():275-87. PubMed ID: 19183905 [TBL] [Abstract][Full Text] [Related]
14. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger. Rigano MM; Manna C; Giulini A; Pedrazzini E; Capobianchi M; Castilletti C; Di Caro A; Ippolito G; Beggio P; De Giuli Morghen C; Monti L; Vitale A; Cardi T Plant Biotechnol J; 2009 Aug; 7(6):577-91. PubMed ID: 19508274 [TBL] [Abstract][Full Text] [Related]
15. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Oey M; Lohse M; Kreikemeyer B; Bock R Plant J; 2009 Feb; 57(3):436-45. PubMed ID: 18939966 [TBL] [Abstract][Full Text] [Related]
16. Production of recombinant proteins in suspension-cultured plant cells. Plasson C; Michel R; Lienard D; Saint-Jore-Dupas C; Sourrouille C; de March GG; Gomord V Methods Mol Biol; 2009; 483():145-61. PubMed ID: 19183898 [TBL] [Abstract][Full Text] [Related]
17. Advances in chloroplast engineering. Wang HH; Yin WB; Hu ZM J Genet Genomics; 2009 Jul; 36(7):387-98. PubMed ID: 19631913 [TBL] [Abstract][Full Text] [Related]