BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19184703)

  • 1. Effect of phosphate and sediment bacteria on trichloroethylene dechlorination with zero valent iron.
    Min JE; Park IS; Ko S; Shin WS; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):362-9. PubMed ID: 19184703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron.
    Wang SM; Tseng SK
    J Biosci Bioeng; 2009 Mar; 107(3):287-92. PubMed ID: 19269594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
    Min JE; Kim M; Pardue JH; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):144-53. PubMed ID: 18172806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.
    Bae Y; Kim D; Cho HH; Singhal N; Park JW
    Water Res; 2012 Dec; 46(19):6391-8. PubMed ID: 23040563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater.
    Chen L; Jin S; Fallgren PH; Liu F; Colberg PJ
    Water Sci Technol; 2013; 67(6):1254-9. PubMed ID: 23508149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pH on dechlorination of trichloroethylene by zero-valent iron.
    Chen JL; Al-Abed SR; Ryan JA; Li Z
    J Hazard Mater; 2001 May; 83(3):243-54. PubMed ID: 11348735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site.
    Dowideit K; Scholz-Muramatsu H; Miethling-Graff R; Vigelahn L; Freygang M; Dohrmann AB; Tebbe CC
    FEMS Microbiol Ecol; 2010 Mar; 71(3):444-59. PubMed ID: 20041951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
    Tseng HH; Su JG; Liang C
    J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron.
    Kim G; Jeong W; Choe S
    J Environ Sci Health B; 2007; 42(3):287-95. PubMed ID: 17454382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene.
    Ziv-El M; Delgado AG; Yao Y; Kang DW; Nelson KG; Halden RU; Krajmalnik-Brown R
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1063-71. PubMed ID: 21667274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination.
    Gu Y; Wang B; He F; Bradley MJ; Tratnyek PG
    Environ Sci Technol; 2017 Nov; 51(21):12653-12662. PubMed ID: 28984446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(III) reduction does not always inhibit complete dechlorination.
    Wei N; Finneran KT
    Environ Sci Technol; 2011 Sep; 45(17):7422-30. PubMed ID: 21777002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY.
    Shin HY; Singhal N; Park JW
    Chemosphere; 2007 Jun; 68(6):1129-34. PubMed ID: 17349671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles.
    Wang SM; Tseng SK
    Bioresour Technol; 2009 Jan; 100(1):111-7. PubMed ID: 18603424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier.
    Chen L; Liu F; Liu Y; Dong H; Colberg PJ
    J Hazard Mater; 2011 Apr; 188(1-3):110-5. PubMed ID: 21316847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.