These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 19185292)

  • 1. Design and synthesis of glucose-templated proline-lysine chimera: polyfunctional amino acid chimera with high prolyl cis amide rotamer population.
    Zhang K; Schweizer F
    Carbohydr Res; 2009 Mar; 344(5):576-85. PubMed ID: 19185292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization.
    Zhang K; Teklebrhan RB; Schreckenbach G; Wetmore S; Schweizer F
    J Org Chem; 2009 May; 74(10):3735-43. PubMed ID: 19354261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of the prolyl trans/cis-amide rotamer population by use of C-glucosylproline hybrids.
    Owens NW; Braun C; Schweizer F
    J Org Chem; 2007 Jun; 72(13):4635-43. PubMed ID: 17536863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of glucose-templated proline mimetics on the beta-turn conformation of the peptide fragment Ac-Leu-D-Phe-Pro-Val-NMe2 found in Gramicidin S.
    Zhang K; Schweizer F
    Carbohydr Res; 2010 Jun; 345(9):1114-22. PubMed ID: 20399421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of N-terminal residue stereochemistry on the prolyl amide geometry and the conformation of 5-tert-butylproline type VI beta-turn mimics.
    Halab L; Lubell WD
    J Pept Sci; 2001 Feb; 7(2):92-104. PubMed ID: 11277501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3(S)-hydroxy-5-hydroxymethylproline hybrids: a computational study.
    Teklebrhan RB; Zhang K; Schreckenbach G; Schweizer F; Wetmore SD
    J Phys Chem B; 2010 Sep; 114(35):11594-602. PubMed ID: 20707355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization.
    Owens NW; Lee A; Marat K; Schweizer F
    Chemistry; 2009 Oct; 15(40):10649-57. PubMed ID: 19739208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides.
    Taylor CM; Hardré R; Edwards PJ
    J Org Chem; 2005 Feb; 70(4):1306-15. PubMed ID: 15704965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of azaproline on Peptide conformation.
    Che Y; Marshall GR
    J Org Chem; 2004 Dec; 69(26):9030-42. PubMed ID: 15609935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-chain effects on peptidyl-prolyl cis/trans isomerisation.
    Reimer U; Scherer G; Drewello M; Kruber S; Schutkowski M; Fischer G
    J Mol Biol; 1998 Jun; 279(2):449-60. PubMed ID: 9642049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of cis-proline analogs on peptide conformation.
    Che Y; Marshall GR
    Biopolymers; 2006 Apr; 81(5):392-406. PubMed ID: 16358327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of the steric effects of 5-tert-butylproline on the conformation of polyproline and the cooperative nature of type II to type I helical interconversion.
    Beausoleil E; Lubell WD
    Biopolymers; 2000 Mar; 53(3):249-56. PubMed ID: 10679629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Puckering transition of 4-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2005 Sep; 109(35):16982-7. PubMed ID: 16853162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of serine O-glycosylation on cis-trans proline isomerization.
    Pao YL; Wormarld MR; Dwek RA; Lellouch AC
    Biochem Biophys Res Commun; 1996 Feb; 219(1):157-62. PubMed ID: 8619800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio conformational study of N-acetyl-L-proline-N',N'-dimethylamide: a model for polyproline.
    Kee Kang Y; Sook Park H
    Biophys Chem; 2005 Jan; 113(1):93-101. PubMed ID: 15617814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locked conformations for proline pyrrolidine ring: synthesis and conformational analysis of cis- and trans-4-tert-butylprolines.
    Koskinen AM; Helaja J; Kumpulainen ET; Koivisto J; Mansikkamäki H; Rissanen K
    J Org Chem; 2005 Aug; 70(16):6447-53. PubMed ID: 16050708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.