These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19185303)
1. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. Sergerie K; Lacoursière MO; Lévesque M; Villemure I J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of the porcine growth plate vary with developmental stage. Wosu R; Sergerie K; Lévesque M; Villemure I Biomech Model Mechanobiol; 2012 Mar; 11(3-4):303-12. PubMed ID: 21559968 [TBL] [Abstract][Full Text] [Related]
3. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization. Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833 [TBL] [Abstract][Full Text] [Related]
4. Tissue and cellular morphological changes in growth plate explants under compression. Amini S; Veilleux D; Villemure I J Biomech; 2010 Sep; 43(13):2582-8. PubMed ID: 20627250 [TBL] [Abstract][Full Text] [Related]
5. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory. Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556 [TBL] [Abstract][Full Text] [Related]
6. Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression. Villemure I; Cloutier L; Matyas JR; Duncan NA J Biomech; 2007; 40(1):149-56. PubMed ID: 16378613 [TBL] [Abstract][Full Text] [Related]
7. Microstructural properties of the distal growth plate of the rabbit radius and ulna: biomechanical, biochemical, and morphological studies. Fujii T; Takai S; Arai Y; Kim W; Amiel D; Hirasawa Y J Orthop Res; 2000 Jan; 18(1):87-93. PubMed ID: 10716283 [TBL] [Abstract][Full Text] [Related]
8. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. Cohen B; Lai WM; Mow VC J Biomech Eng; 1998 Aug; 120(4):491-6. PubMed ID: 10412420 [TBL] [Abstract][Full Text] [Related]
9. Growth plate explants respond differently to in vitro static and dynamic loadings. Sergerie K; Parent S; Beauchemin PF; Londoño I; Moldovan F; Villemure I J Orthop Res; 2011 Apr; 29(4):473-80. PubMed ID: 21337387 [TBL] [Abstract][Full Text] [Related]
10. An experimental and theoretical analysis of unconfined compression of corneal stroma. Hatami-Marbini H; Etebu E J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313 [TBL] [Abstract][Full Text] [Related]
11. Adaptation of mechanical, morphological, and biochemical properties of the rat growth plate to dose-dependent voluntary exercise. Niehoff A; Kersting UG; Zaucke F; Morlock MM; Brüggemann GP Bone; 2004 Oct; 35(4):899-908. PubMed ID: 15454097 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry. Shahar R; Zaslansky P; Barak M; Friesem AA; Currey JD; Weiner S J Biomech; 2007; 40(2):252-64. PubMed ID: 16563402 [TBL] [Abstract][Full Text] [Related]
13. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression. Kiviranta P; Rieppo J; Korhonen RK; Julkunen P; Töyräs J; Jurvelin JS J Orthop Res; 2006 Apr; 24(4):690-9. PubMed ID: 16514661 [TBL] [Abstract][Full Text] [Related]
14. Rate dependent biomechanical properties of corneal stroma in unconfined compression. Hatami-Marbini H; Etebu E Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279 [TBL] [Abstract][Full Text] [Related]
15. Lectin-binding histochemistry of intracellular and extracellular glycoconjugates of the reserve cell zone of growth plate cartilage. Farnum CE; Wilsman NJ J Orthop Res; 1988; 6(2):166-79. PubMed ID: 3278077 [TBL] [Abstract][Full Text] [Related]
16. Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones. Noonan KJ; Hunziker EB; Nessler J; Buckwalter JA J Orthop Res; 1998 Jul; 16(4):500-8. PubMed ID: 9747793 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical properties of human articular cartilage under compressive loads. Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: a confocal microscopy study. Amini S; Veilleux D; Villemure I J Orthop Res; 2011 May; 29(5):710-7. PubMed ID: 21437950 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of single zonal chondrocytes. Shieh AC; Athanasiou KA J Biomech; 2006; 39(9):1595-602. PubMed ID: 15992803 [TBL] [Abstract][Full Text] [Related]
20. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Julkunen P; Korhonen RK; Herzog W; Jurvelin JS Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]