These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19185926)

  • 1. A comparison of a child's fundamental frequencies in structured elicited vocalizations versus unstructured natural vocalizations: a case study.
    Hunter EJ
    Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):561-71. PubMed ID: 19185926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of task type on fundamental frequency in children.
    Baker S; Weinrich B; Bevington M; Schroth K; Schroeder E
    Int J Pediatr Otorhinolaryngol; 2008 Jun; 72(6):885-9. PubMed ID: 18395803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of four nonclinical speaking environments on a child's fundamental frequency and voice level: a preliminary case study.
    Hunter EJ; Halpern AE; Spielman JL
    Lang Speech Hear Serv Sch; 2012 Jul; 43(3):253-63. PubMed ID: 22269586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severity of voice disorders in children: correlations between perceptual and acoustic data.
    Lopes LW; Barbosa Lima IL; Alves Almeida LN; Cavalcante DP; de Almeida AA
    J Voice; 2012 Nov; 26(6):819.e7-12. PubMed ID: 23177753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal Acoustics and Aerodynamics During Scripted Reading Compared to Spontaneous Speech.
    Gilman M; Shelly S; Gillespie AI
    J Voice; 2023 Jul; 37(4):539-545. PubMed ID: 34175170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An acoustic-perceptual study of vocal tremor.
    Anand S; Shrivastav R; Wingate JM; Chheda NN
    J Voice; 2012 Nov; 26(6):811.e1-7. PubMed ID: 22921293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do-It-Yourself Voice Dosimeter Device: A Tutorial and Performance Results.
    Bottalico P; Nudelman CJ
    J Speech Lang Hear Res; 2023 Jul; 66(7):2149-2163. PubMed ID: 37263017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An examination of elicitation method on fundamental frequency and repeatability of average airflow measures in children age 4:0-5:11 years.
    Brehm SB; Weinrich BD; Sprouse DC; May SK; Hughes MR
    J Voice; 2012 Nov; 26(6):721-5. PubMed ID: 22795980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Speech Fundamental Frequencies for Different Tasks in Japanese.
    Sotome T; Kanazawa T; Konomi U; Maeara N; Misawa K; Takahashi S; Fukaura J; Watanabe Y
    J Voice; 2023 Mar; 37(2):299.e1-299.e8. PubMed ID: 33455851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean fundamental frequency in connected speech and sustained vowel with and without a sentence-frame.
    Iwarsson J; Hollen Nielsen R; Næs J
    Logoped Phoniatr Vocol; 2020 Jul; 45(2):91-96. PubMed ID: 31407616
    [No Abstract]   [Full Text] [Related]  

  • 13. [Comparison of the results of acoustic analysis of the voice recorded by different methods].
    Chernobel'skiĭ SI
    Vestn Otorinolaringol; 2014; (1):41-3. PubMed ID: 24577031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the cepstral acoustic characteristics of voice in healthy children.
    Demirci AN; Köse A; Aydinli FE; İncebay Ö; Yilmaz T
    Int J Pediatr Otorhinolaryngol; 2021 Sep; 148():110815. PubMed ID: 34217000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task.
    Brockmann M; Drinnan MJ; Storck C; Carding PN
    J Voice; 2011 Jan; 25(1):44-53. PubMed ID: 20381308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective analysis of voice in normal young adults.
    Toran KC; Lal BK
    Kathmandu Univ Med J (KUMJ); 2009; 7(28):374-7. PubMed ID: 20502077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic and capacity analysis of the vocal organ in patients with functional and organic larynx disorders using the DiagnoScope Specialist software.
    Owczarek K; Niewiadomski P; Olszewski J
    Otolaryngol Pol; 2019 Apr; 73(4):21-28. PubMed ID: 31474623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.
    Herbst CT; Hertegard S; Zangger-Borch D; Lindestad PÅ
    Logoped Phoniatr Vocol; 2017 Apr; 42(1):29-38. PubMed ID: 27079680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective Acoustic Quantification of Perceived Voice Tremor Severity.
    Maryn Y; Leblans M; Zarowski A; Barkmeier-Kraemer J
    J Speech Lang Hear Res; 2019 Oct; 62(10):3689-3705. PubMed ID: 31619112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic assessment of the voices of children using nonlinear analysis: proposal for assessment and vocal monitoring.
    Lopes LW; Costa SL; Costa WC; Correia SÉ; Vieira VJ
    J Voice; 2014 Sep; 28(5):565-73. PubMed ID: 24836362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.